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1 Introduction

For decades, the nonlinear complementarity problem (NCP) has attracted a lot of atten-

tion because of its wide applications in operations research, economics, and engineering

[9, 12]. Given a mapping F : IRn → IRn, the NCP is to find a point x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, ⟨x, F (x)⟩ = 0, (1)

where ⟨·, ·⟩ is the Euclidean inner product. Throughout this paper, we assume that F is

continuously differentiable, and let F = (F1, . . . , Fn)T with Fi : IRn → IR for i = 1, . . . , n.

There have been many methods proposed for solving the NCP [9, 12]. One of the

most popular approaches is to reformulate the NCP as an unconstrained minimization

problem via a merit function; see [14, 19, 20, 21]. A merit function is a function whose

global minimizers coincide with the solutions of the NCP. The class of NCP-functions

defined below is used to construct a merit function.

Definition 1.1 A function ϕ : IR × IR → IR is called an NCP-function if it satisfies

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

A popular NCP-function is the Fischer-Burmeister (FB) function [10, 11], which is defined

as

ϕ
FB

(a, b) =
√
a2 + b2 − (a+ b). (3)

The FB merit function ψ
FB

: IR× IR → IR+ can be obtained by taking the square of ϕ
FB

,

i.e.,

ψ
FB

(a, b) :=
1

2
|ϕ

FB
(a, b)|2. (4)

In [1, 3, 4], we studied a family of NCP-functions that subsumes the FB function ϕ
FB

as a special case. More specifically, we define ϕp : IR × IR → IR by

ϕp(a, b) := ∥(a, b)∥p − (a+ b), (5)

where p is any fixed real number from (1,+∞) and ∥(a, b)∥p denotes the p-norm of (a, b),

i.e., ∥(a, b)∥p = p
√
|a|p + |b|p. In other words, in the function ϕp, we replace the 2-norm

of (a, b) in the FB function ϕ
FB

by a more general p-norm of (a, b). The function ϕp is

still an NCP-function, as noted in Tseng’s paper [30]. There has been no further study

on this NCP-function, even for p = 3, until recently [1, 3, 4]. Similar to ϕ
FB

, the square

of ϕp induces a nonnegative NCP-function ψp : IR × IR → IR+:

ψp(a, b) :=
1

2
|ϕp(a, b)|2. (6)
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The function ψp is continuously differentiable and it has some favorable properties; see

[1, 3, 4]. Moreover, if we define the function Ψp : IRn → IR+ by

Ψp(x) :=
n∑

i=1

ψp(xi, Fi(x)) =
1

2
∥Φp(x)∥2 (7)

where Φp : IRn → IRn is a mapping given as

Φp(x) =

 ϕp(x1, F1(x))
...

ϕp(xn, Fn(x))

 , (8)

then the NCP can be reformulated into the following smooth minimization problem:

min
x∈IRn

Ψp(x). (9)

Thus, Ψp(x) in (7) is a smooth merit function for the NCP.

Effective gradient-type methods can be applied to the unconstrained smooth min-

imization problem (9). However, in many scientific and engineering applications, it

is desirable to have a real-time solution of the NCP. Thus, traditional unconstrained

optimization algorithms may not be suitable for real-time implementation because the

computing time required for a solution greatly depends on the dimension and structure

of the problem. One promising way to overcome this problem is to apply neural networks.

Neural networks for optimization were first introduced in the 1980s by Hopfield and

Tank [16, 29]. Since then, neural networks have been applied to various optimization

problems, including linear programming, nonlinear programming, variational inequali-

ties, and linear and nonlinear complementarity problems; see [6, 8, 7, 15, 17, 18, 23, 25,

32, 33, 34, 35, 36]. There have been many studies on neural-network approaches to real-

world problems in some other fields, such as [27, 28, 37]. The main idea of the neural

network approach for optimization is to construct a nonnegative energy function and

establish a dynamic system that represents an artificial neural network. The dynamic

system is usually in the form of first order ordinary differential equations. Furthermore,

it is expected that the dynamic system will approach its static state (or an equilibrium

point), which corresponds to the solution for the underlying optimization problem, start-

ing from an initial point. In addition, neural networks for solving optimization problems

are hardware-implementable; that is, the neural networks can be implemented using in-

tegrated circuits.

In this paper, we focus on a neural network approach to the NCP. We utilize Ψp(x)

as the traditional energy function. As mentioned above, the NCP is equivalent to the
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unconstrained smooth minimization problem (9). Therefore, it is natural to adopt the

following steepest descent-based neural network model for NCP:

dx(t)

dt
= −ρ∇Ψp(x(t)), x(0) = x0, (10)

where ρ > 0 is a scaling factor. Most neural networks in the existing literature are

projection-type ones based on other kinds of NCP-functions, such as natural residual

function (e.g. [18, 34]) and the regularized gap function (e.g. [6]). Recently, neural

networks based on the FB function have been designed for linear and quadratic pro-

gramming, and for nonlinear complementarity problems [8, 25]. Our model is based on

the generalized FB function, which is a generalization of the functions used in [8, 25].

We show that the neural network (10) is Lyapunov stable, asymptotically stable, and

exponentially stable. We observed in [2] that p has a great influence on the numerical

performance of certain descent-type methods; a larger p yields a better convergence rate,

whereas a smaller p often gives a better global convergence. Thus, whether such phe-

nomena occur in our neural network model is also investigated.

Throughout this paper, IRn denotes the space of n-dimensional real column vectors

and T denotes the transpose. For any differentiable function f : IRn → IR, ∇f(x) means

the gradient of f at x. For any differentiable mapping F = (F1, . . . , Fm)T : IRn → IRm,

∇F (x) = [∇F1(x) · · · ∇Fm(x)] ∈ IRn×m denotes the transposed Jacobian of F at x. The

p-norm of x is denoted by ∥x∥p and the Euclidean norm of x is denoted by ∥x∥. Besides, ei

is the n-dimensional vector whose i-th component is 1 and 0 elsewhere. Unless otherwise

stated, we assume that p in the sequel is any fixed real number in (1,+∞) if not specified.

2 Preliminaries

In this section, we review some properties of ϕp and ψp, as well as materials of ordinary

differential equations that will play an important role in the subsequent analysis. We

start with some concepts for a nonlinear mapping.

Definition 2.1 Let F = (F1, . . . , Fn)T : IRn → IRn. Then, the mapping F is said to be

(a) monotone if ⟨x− y, F (x) − F (y)⟩ ≥ 0 for all x, y ∈ IRn.

(b) strongly monotone with modulus µ > 0 if ⟨x − y, F (x) − F (y)⟩ ≥ µ∥x − y∥2 for all

x, y ∈ IRn.

(c) an P0-function if max
1≤i≤n
xi ̸=yi

(xi − yi)(Fi(x) − Fi(y)) ≥ 0 for all x, y ∈ IRn and x ̸= y.
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(d) a uniform P -function with modulus κ > 0 if max
1≤i≤n

(xi−yi)(Fi(x)−Fi(y)) ≥ κ∥x−y∥2,

for all x, y ∈ IRn.

(e) Lipschitz continuous if there exists a constant L > 0 such that ∥F (x) − F (y)∥ ≤
L∥x− y∥ for all x, y ∈ IRn.

From Definition 2.1, the following one-sided implications can be obtained:

F is strongly monotone =⇒ F is a uniform P -function =⇒ F is an P0 function;

∇F is positive semidefinite =⇒ F is monotone =⇒ F is an P0 function.

Nevertheless, we point out that F being a uniform P -function does not necessarily imply

that F is monotone. The following two lemmas summarize some favorable properties of

ϕp and ψp, respectively. Since their proofs can be found in [2, 3, 4], we here omit them.

Lemma 2.1 Let ϕp : IR × IR → IR be given by (5). Then, the following properties hold.

(a) ϕp is a positive homogeneous and sub-additive NCP-function.

(b) ϕp is Lipschitz continuous with L =
√

2 + 2(1/p−1/2) for 1 < p < 2, and L =
√

2 + 1

for p ≥ 2.

(c) ϕp is strongly semismooth.

(d) If {(ak, bk)} ⊆ IR × IR with ak → −∞, or bk → −∞, or ak → ∞, bk → ∞, then

|ϕp(a
k, bk)| → ∞ when k → ∞.

(e) Given a point (a, b) ∈ IR× IR, every element in the generalized gradient ∂ϕp(a, b) has

the representation (ξ − 1, ζ − 1) with

ξ =
sgn(a) · |a|p−1

∥(a, b)∥p−1
p

and ζ =
sgn(b) · |b|p−1

∥(a, b)∥p−1
p

for (a, b) ̸= (0, 0), where sgn(·) represents the sign function; otherwise, ξ and ζ are

real numbers that satisfy |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1.

Lemma 2.2 Let ϕp and ψp be defined as in (5) and (6), respectively. Then,

(a) ψp(a, b) ≥ 0 for all a, b ∈ IR and ψp is an NCP-function, i.e., it satisfies (2).

(b) ψp is continuously differentiable everywhere. Moreover, ∇aψp(a, b) = ∇bψp(a, b) = 0

if (a, b) = (0, 0); otherwise,

∇aψp(a, b) =

(
sgn(a) · |a|p−1

∥(a, b)∥p−1
p

− 1

)
ϕp(a, b),

∇bψp(a, b) =

(
sgn(b) · |b|p−1

∥(a, b)∥p−1
p

− 1

)
ϕp(a, b). (11)
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(c) ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for all a, b ∈ IR. The inequality becomes an equality if

and only if ϕp(a, b) = 0.

(d) ∇aψp(a, b) = 0 ⇐⇒ ∇bψp(a, b) = 0 ⇐⇒ ϕp(a, b) = 0 ⇐⇒ ψp(a, b) = 0.

(e) The gradient of ψp is Lipschitz continuous for p ≥ 2, i.e., there exists L > 0 such

that

∥∇ψp(a, b) −∇ψp(c, d)∥ ≤ L∥(a, b) − (c, d)∥ for all (a, b), (c, d) ∈ IR2 and p ≥ 2.

(f) For all a, b ∈ IR, we have (2 − 21/p) min{a, b} ≤ |ϕp(a, b)| ≤ (2 + 21/p) min{a, b}.

Next, we recall some materials about first order differential equations (ODE):

ẋ(t) = H(x(t)), x(t0) = x0 ∈ IRn (12)

where H : IRn → IRn is a mapping. We also introduce three kinds of stability that will

be discussed later. These materials can be found in ODE textbooks; see [26].

Definition 2.2 A point x∗ = x(t∗) is called an equilibrium point or a steady state of the

dynamic system (12) if H(x∗) = 0. If there is a neighborhood Ω∗ ⊆ IRn of x∗ such that

H(x∗) = 0 and H(x) ̸= 0 ∀x ∈ Ω∗\{x∗}, then x∗ is called an isolated equilibrium point.

Lemma 2.3 Assume that H : IRn → IRn is a continuous mapping. Then, for any t0 ≥ 0

and x0 ∈ IRn, there exists a local solution x(t) for (12) with t ∈ [t0, τ) for some τ > t0.

If, in addition, H is locally Lipschitz continuous at x0, then the solution is unique; if H

is Lipschitz continuous in IRn, then τ can be extended to ∞.

If a local solution defined on [t0, τ) cannot be extended to a local solution on a larger

interval [t0, τ1), τ1 > τ , then it is called a maximal solution, and the interval [t0, τ) is the

maximal interval of existence. Clearly, any local solution has an extension to a maximal

one. We denote [t0, τ(x0)) by the maximal interval of existence associated with x0.

Lemma 2.4 Assume that H : IRn → IRn is continuous. If x(t) with t ∈ [t0, τ(x0)) is a

maximal solution and τ(x0) <∞, then lim
t↑τ(x0)

∥x(t)∥ = ∞.

Definition 2.3 (Stability in the sense of Lyapunov) Let x(t) be a solution for (12). An

isolated equilibrium point x∗ is Lyapunov stable if for any x0 = x(t0) and any ε > 0,

there exists a δ > 0 such that ∥x(t) − x∗∥ < ε for all t ≥ t0 and ∥x(t0) − x∗∥ < δ.
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Definition 2.4 (Asymptotic stability) An isolated equilibrium point x∗ is said to be

asymptotically stable if in addition to being Lyapunov stable, it has the property that

x(t) → x∗ as t→ ∞ for all ∥x(t0) − x∗∥ < δ.

Definition 2.5 (Lyapunov function) Let Ω ⊆ IRn be an open neighborhood of x̄. A

continuously differentiable function W : IRn → IR is said to be a Lyapunov function at

the state x̄ over the set Ω for equation (12) if W (x̄) = 0, W (x) > 0, ∀x ∈ Ω\{x̄}.
dW (x(t))

dt
= ∇W (x(t))TH(x(t)) ≤ 0, ∀x ∈ Ω.

(13)

Lemma 2.5 (a) An isolated equilibrium point x∗ is Lyapunov stable if there exists a

Lyapunov function over some neighborhood Ω∗ of x∗.

(b) An isolated equilibrium point x∗ is asymptotically stable if there is a Lyapunov func-

tion over some neighborhood Ω∗ of x∗ such that
dW (x(t))

dt
< 0 for all x ∈ Ω∗\{x∗}.

Definition 2.6 (Exponential stability) An isolated equilibrium point x∗ is exponentially

stable if there exists a δ > 0 such that arbitrary point x(t) of (10) with the initial condition

x(t0) = x0 and ∥x(t0) − x∗∥ < δ is well-defined on [0,+∞) and satisfies

∥x(t) − x∗∥2 ≤ ce−ωt∥x(t0) − x∗∥ ∀t ≥ t0,

where c > 0 and ω > 0 are constants independent of the initial point.

3 Neural network model

We now discuss properties of the neural network model introduced in (10). First, from

Lemma 2.2(a), we obtain the following result.

Proposition 3.1 Let Ψp : IRn → IR+ be defined as in (7). Then, Ψp(x) ≥ 0 for all

x ∈ IRn and Ψp(x) = 0 if and only if x solves the NCP.

Proposition 3.2 Let Ψp : IRn → IR+ be given by (7). Then, the following results hold.
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(a) The function Ψp is continuously differentiable everywhere with

∇Ψp(x) = V T Φp(x) for any V ∈ ∂Φp(x) (14)

or

∇Ψp(x) = ∇aψp(x, F (x)) + ∇F (x)∇bψp(x, F (x)) (15)

with

∇aψp(x, F (x)) := [∇aψp(x1, F1(x)), . . . ,∇aψp(xn, Fn(x))]T ,

∇bψp(x, F (x)) := [∇bψp(x1, F1(x)), . . . ,∇bψp(xn, Fn(x))]T .

(b) If F is an P0-function, then every stationary point of (9) is a global minimizer of

Ψp(x), and it consequently solves the NCP.

(c) If F is a uniform P -function, then the level sets L(Ψp, γ) := {x ∈ IRn | Ψp(x) ≤ γ}
are bounded for all γ ∈ IR.

(d) Ψp(x(t)) is nonincreasing with respect to t.

Proof. The first equality in (a) follows from Lemma 2.2 (c) and [5, Theorem 2.6.6].

The second one follows from the chain rule. Part (b) is the result of [3, Proposition 3.4],

and part (c) is the result of [4, Proposition 3.5]. It remains to show part (d). By the

definition of Ψp(x) and (10), it is not difficult to compute

dΨp(x(t))

dt
= ∇Ψp(x(t))

T dx(t)

dt
= ∇Ψp(x(t))

T (−ρ∇Ψp(x(t)))

= −ρ∥∇Ψp(x(t))∥2 ≤ 0. (16)

Therefore, Ψp(x(t)) is a monotonically decreasing function with respect to t. 2

Proposition 3.2(a) provides two ways to compute ∇Ψp(x), which is needed in the

network (10). One is to use formula (14), for which we give an algorithm (see Algorithm

3.1 below), to evaluate an element V ∈ ∂Φp(x). The other is to adopt formula (15).

Algorithm 3.1 (The procedure to evaluate an element V ∈ ∂Φp(x))

(S.0) Let x ∈ IRn be given, and let Vi denote the i-th row of a matrix V ∈ IRn×n.

(S.1) Set I(x) := {i ∈ {1, 2, . . . , n}| xi = Fi(x) = 0}.

(S.2) Set z ∈ IRn such that zi = 0 for i /∈ I(x), and zi = 1 for i ∈ I(x).

(S.3) For i ∈ I(x), let ui =
[
|zi|

p
p−1 + |∇Fi(x)

T z|
p

p−1

] p−1
p

, and

Vi =

(
zi

ui

− 1

)
eT

i +

(
∇Fi(x)

T z

ui

− 1

)
∇Fi(x)

T .
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(S.4) For i /∈ I(x), set

Vi =

(
sgn(xi) · |xi|p−1

∥(xi, Fi(x))∥p−1
p

− 1

)
eT

i +

(
sgn(Fi(x)) · |Fi(x)|p−1

∥(xi, Fi(x))∥p−1
p

− 1

)
∇Fi(x)

T .

The above procedure is a traditional way of obtaining ∇Ψp(x(t)). For example,

the neural network in [25] uses (14) and a similar algorithm to evaluate an element of

V ∈ ∂Φ
FB

(x). We propose a simpler way of obtaining ∇Ψp(x(t)) which is to compute

∇Ψp(x(t)) by using formula (15) rather than formula (14). Formula (15) also provides an

indication on how the neural network (10) can be implemented on hardware; see Figure

1 below.

Figure 1: A simplified block diagram for the neural network (10).

To close this section, we claim that Ψp provides a global error bound for the solution

of the NCP. This result is important and will be used to analyze the influence of p on the

convergence rate of the trajectory x(t) of the neural network (10) in the next section.

Proposition 3.3 Suppose F is a uniform P -function with modulus κ > 0 and Lipschitz

continuous with constant L > 0. Then, the NCP has a unique solution x∗, and

∥x− x∗∥2 ≤ 4L2

κ2(2 − 21/p)2
Ψp(x) ∀x ∈ IRn.
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Proof. Since F is a uniform P -function, by Proposition 3.2(c), there exists a global

minimizer of Ψp(x) which says the NCP has a solution. Assume that the NCP has two

different solutions x∗ and y∗, then by Definition 2.1(d) we have

κ∥x∗ − y∗∥2 ≤ max
1≤i≤m

(x∗i − y∗i )(Fi(x
∗) − Fi(y

∗))

= max
1≤i≤m

{
− x∗iFi(y

∗) − y∗i Fi(x
∗)
}
≤ 0

where the equality is due to the fact that x∗iFi(x
∗) = y∗i Fi(y

∗) = 0 for i = 1, 2, . . . , n

(note that x∗ and y∗ are the solutions to the NCP), and the last inequality holds since

x∗, y∗ ≥ 0 and F (x∗), F (y∗) ≥ 0. This leads to a contradiction. Hence, the NCP has a

unique solution.

For any x ∈ IRn, let r(x) := (r1(x), . . . , rn(x))T with ri(x) = min{xi, Fi(x)} for

i = 1, . . . , n. Since F is Lipschitz continuous with constant L > 0, by [21, Lemma 7.4]

we have

(xi − x∗i )(Fi(x) − Fi(x
∗)) ≤ 2L|ri(x)|∥x− x∗∥,

for all x ∈ IRn and i = 1, 2, . . . , n. On the other hand, since F is a uniform P -function

with modulus κ > 0, from Definition 2.1(d) it follows that

κ∥x− x∗∥2 ≤ max
1≤i≤n

(xi − x∗i )(Fi(x) − Fi(x
∗))

for any x ∈ IRn. Combining the last two equations yields

∥x− x∗∥ ≤ (2L/κ) max
1≤i≤n

|ri(x)| ∀x ∈ IRn.

This together with Lemma 2.2(f) implies

∥x− x∗∥ ≤ 2L

κ(2 − 21/p)
max
1≤i≤n

|ϕp(xi, Fi(x))| ≤
2L

κ(2 − 21/p)
∥Φp(x)∥.

Consequently, we obtain the desired result. 2

4 Convergence and stability of the trajectory

This section focuses on issues of convergence and stability of the neural network (10).

We analyze the behavior of the solution trajectory of (10) including the existence and

convergence, and establish three kinds of stability for an isolated equilibrium point. We

first state the relationships between an equilibrium point of (10) and a solution to the

NCP.

10



Proposition 4.1 (a) Every solution to the NCP is an equilibrium point of (10).

(b) If F is an P0-function, then every equilibrium point of (10) is a solution to the NCP.

Proof. (a) Suppose that x is a solution to the NCP. Then, from Proposition 3.1, it is

clear that Φp(x) = 0. Using Lemma 2.2 (d) and (15), we then have ∇Ψp(x) = 0. This,

by Definition 2.2, shows that x is an equilibrium point of (10).

(b) This is a direct consequence of Proposition 3.2 (b). 2

The following proposition establishes the existence of the solution trajectory of (10).

Proposition 4.2 For any fixed p ≥ 2, the following hold.

(a) For any initial state x0 = x(t0), there exists exactly one maximal solution x(t) with

t ∈ [t0, τ(x0)) for the neural network (10).

(b) If the level set L(x0) = {x ∈ IRn | Ψp(x) ≤ Ψp(x0)} is bounded or F is Lipschitz

continuous, then τ(x0) = +∞.

Proof. (a) Since F is continuously differentiable, ∇F (x) is continuous, and therefore,

∇F (x) is bounded on a local compact neighborhood of x. On the other hand, ∇aψp and

∇bψp are Lipschitz continuous by Lemma 2.2 (e). These two facts together with formula

(15) show that ∇Ψp(x) is locally Lipschitz continuous. Thus, applying Lemma 2.3 leads

to the desired result.

(b) We proceed the arguments by the two cases as shown below.

Case (i): The level set L(x0) is bounded. We prove the result by contradiction. Suppose

τ(x0) <∞. Then, by Lemma 2.4, lim
t↑τ(x0)

∥x(t)∥ = ∞. Let Lc(x0) := IRn\L(x0) and

τ0 := inf{s ≥ 0 | s < τ(x0), x(s) ∈ Lc(x0)} <∞.

We know that x(τ0) lies on the boundary of L(x0) and Lc(x0). Moreover, L(x0) is compact

since it is bounded by assumption and it is also closed because of the continuity of Ψp(x).

Therefore, we have x(τ0) ∈ L(x0) and τ0 < τ(x0), implying that

Ψp(x(s)) > Ψp(x0) > Ψp(x(τ0)) for some s ∈ (τ0, τ(x0)). (17)

However, Proposition 3.2(d) says that Ψp(x(·)) is nonincreasing on [t0, τ(x0)), which

contradicts (17). This completes the proof of Case (i).

Case (ii): F is Lipschitz continuous. From the proof of part (a), we know that ∇Ψp(x)

is Lipschitz continuous. Thus, by Lemma 2.3, we have τ(x0) = ∞. 2

Next, we investigate the convergence of the solution trajectory of (10).
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Theorem 4.1 (a) Let x(t) with t∈ [t0, τ(x0)) be the unique maximal solution to (10).

If τ(x0) = ∞ and {x(t)} is bounded, then lim
t→∞

∇Ψp(x(t)) = 0.

(b) If F is strongly monotone or a uniform P -function, then L(x0) is bounded and every

accumulation point of the trajectory x(t) is a solution to the NCP.

Proof. With Proposition 3.2 (b) and (d) and Proposition 4.2, the arguments are exactly

the same as those for [25, Corollary 4.3]. Thus, we omit them. 2

From Proposition 4.1 (a), every solution x∗ to the NCP is an equilibrium point of the

neural network (10). If, in addition, x∗ is an isolated equilibrium point of (10), then we

can show that x∗ is not only Lyapunov stable but also asymptotically stable.

Theorem 4.2 Let x∗ be an isolated equilibrium point of the neural network (10). Then,

x∗ is Lyapunov stable for (10), and furthermore, it is asymptotically stable.

Proof. Since x∗ is a solution to the NCP, Ψp(x
∗) = 0. In addition, since x∗ is an isolated

equilibrium point of (10), there exists a neighborhood Ω∗ ⊆ IRn of x∗ such that

∇Ψp(x
∗) = 0, and ∇Ψp(x) ̸= 0 ∀x ∈ Ω∗\{x∗}.

Next, we argue that Ψp(x) is indeed a Lyapunov function at x∗ over the set Ω∗ for (10) by

showing that the conditions in (13) are satisfied. First, notice that Ψp(x) ≥ 0. Suppose

that there is an x̄ ∈ Ω∗\{x∗} such that Ψp(x̄) = 0. Then, by formula (15) and Lemma

2.2(d), we have ∇Ψ(x̄) = 0, i.e., x̄ is also an equilibrium point of (10), which clearly

contradicts the assumption that x∗ is an isolated equilibrium point in Ω∗. Thus, we

prove that Ψp(x) > 0 for any x ∈ Ω∗\{x∗}. This together with (16) shows that the

conditions in (13) are satisfied, and hence Ψp(x) is a Lyapunov function at x∗ over the

set Ω∗ for (10). Therefore, x∗ is Lyapunov stable by Lemma 2.5(a).

Now, we show that x∗ is asymptotically stable. Since x∗ is isolated, from (16) we have

dΨp(x(t))

dt
< 0, ∀ x(t) ∈ Ω∗\{x∗}.

This, by Lemma 2.5 (b), implies that x∗ is asymptotically stable. 2

Furthermore, using the same arguments we can prove that the neural network (10) is

also exponentially stable if x∗ is a regular solution to the NCP. Recall that x∗ is a regular

solution to the NCP if every element V ∈ ∂Φp(x
∗) is nonsingular.

Theorem 4.3 If x∗ is a regular solution of the NCP, then it is exponentially stable.
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Remark 4.1 (a) Using arguments similar to those used in Proposition 3.2 of [13], we

can prove that x∗ is regular if ∇Fαα is nonsingular and the Schur complement of

∇Fαα in (
∇Fαα(x∗) ∇Fαβ(x∗)

∇Fβα(x∗) ∇Fββ(x∗)

)
is an P -matrix, where α := {i | x∗i > 0} and β := {i | x∗i = Fi(x

∗) = 0}. Clearly,

if ∇F is positive definite, then the conditions hold true.

(b) From Definition 2.6, if an isolated equilibrium point x∗ is exponentially stable, then

there exists a δ > 0 such that x(t) with x0 = (t0), and ∥x(t0) − x∗∥ < δ satisfies

∥x(t) − x∗∥ ≤ ce−ωt∥x(t0) − x∗∥ ∀t ≥ t0,

which together with Proposition 3.3 implies that

∥x(t) − x∗∥ ≤ 2cL

κ(2 − 21/p)

√
Ψp(x0)e

−ωt ∀t ≥ t0. (18)

Since the strong monotonicity of F implies that F is a uniform P -function and

that ∇F is positive definite, from (18) we obtain that the neural network (10) can

yield a trajectory with an exponential convergence rate under the condition that F

is strongly monotone and Lipschitz continuous.

(c) We observe from (18) that, when p increases, the coefficient of e−ωt in the right hand

side term becomes smaller, which in turn implies that a larger p yields a better

convergence rate. This agrees with the result obtained by [2] for a descent-type

method based on Ψp. In addition, from (18) we notice that the energy of the initial

state, i.e., Ψp(x0) also has an influence on the convergence rate. A higher initial

energy will lead to a worse convergence rate.

5 Simulation results

In this section, we test four well-known nonlinear complementarity problems by our neural

network model (10). For each test problem, we also compare the numerical performance

of the proposed neural network with various values of p and various initial states x(t0).

The test instances are described below.

Example 5.1 [32, Example 2] Consider the NCP, where F : IR5 → IR5 is given by

F (x) =


x1 + x2x3x4x5/50

x2 + x1x3x4x5/50 − 3

x3 + x1x2x4x5/50 − 1

x4 + x1x2x3x5/50 + 1/2

x5 + x1x2x3x4/50

 .
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The NCP has only one solution x∗ = (0, 3, 1, 0, 0).

Example 5.2 [31, Watson] Consider the NCP, where F : IR5 → IR5 is given by

F (x) = 2 exp

(
5∑

i=1

(xi − i+ 2)2

)
x1 + 1

x2

x3 − 1

x4 − 2

x5 − 3

 .

Note that F is not a P0-function on IRn. The solution to this problem is x∗ = (0, 0, 1, 2, 3).

Example 5.3 [24, Kojima-Shindo] Consider the NCP, where F : IR4 → IR4 is given by

F (x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .

This is a non-degenerate NCP and the solution is x∗ = (
√

6/2, 0, 0, 1/2).

Example 5.4 [24, Kojima-Shindo] Consider the NCP, where F : IR4 → IR4 is given by

F (x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .

This is a degenerate NCP and has two solutions x∗ = (
√

6/2, 0, 0, 1/2) and x∗ = (1, 0, 3, 0).

The numerical implementation is coded by Matlab 7.0 and the ordinary differential

equation solver adopted is ode23, which uses an Runge-Kutta (2, 3) formula. We first

test the influence of the parameter p on the value of ∥x(t) − x∗∥. Figures 2–5 in the

appendix describe how ∥x(t)−x∗∥ varies with p for these instances with the initial states

x0 = (10−2, 1, 0.5, 10−2, 10−2)T , x0 = (10−2, 10−2, 0.5, 0.5, 0.5)T , x0 = (2, 10−2, 10−2, 0.1)T ,

and x0 = (10−3, 10−3, 10−3, 10−3)T , respectively. In the tests, the design parameter ρ in

the neural network (10) is set to be 1000. From Figures 2–5, we see that, when p = 1.1,

the neural network (10) generates the slowest decrease of ∥x(t)−x∗∥ for all test instances,

whereas when p = 20 it generates the fastest decrease of ∥x(t) − x∗∥. This verifies the

analysis of Remark 4.1 (c). We should emphasize that the conclusion in Remark 4.1

(c) requires the initial state x0 to be sufficiently close to an equilibrium point. If this
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condition is not satisfied, we cannot draw such conclusion; see Figure 6.

Example 5.1 shows how the value of ∥x(t)− x∗∥ varies with initial state x0. Figure 7

describes the convergence behavior of ∥x(t)−x∗∥ with initial states x
(1)
0 = (1, 1, 1, 1, 1)T ,

x
(2)
0 = (5, 5, 5, 5, 5)T , and x

(3)
0 = (10, 10, 10, 10, 10)T . Notice that the initial energies cor-

responding to these three states are Ψp(x
(1)
0 ) = 5.814, Ψp(x

(2)
0 ) = 39.367, and Ψp(x

(3)
0 ) =

226.333, respectively. In the tests, we choose p = 1.8 and ρ = 1000. Figure 7, shows that

a larger initial energy yields a slower decrease of the error ∥x(t) − x∗∥ if the initial state

is close to the solution of the NCP. This agrees with the analysis in Remark 4.1(c).

The convergence behavior of x(t) from several initial states with a fixed p and ρ = 1000

for each example is shown in Figures 8–12. The transient behavior of x(t) for Example

5.4 is depicted in Figure 11 and Figure 12 since there are two solutions for this problem.

More specifically, we test 12 random initial points for the NCP, 9 of which converge to

(
√

6/2, 0, 0, 1/2); the remaining 3 converge to (1, 0, 3, 0). When finding the solution tra-

jectory x(t), we employ ∥∇Ψp(x(t))∥ ≤ 10−5 as the stopping criterion.

To sum up, the neural network (10) is a better alternative for the network based on

the FB function ϕ
FB

if an appropriate p is chosen. Based on the analysis of Remark 4.1

(c) and the above numerical simulations, we see that, to obtain a better convergence rate

of the trajectory x(t), the parameter p cannot be set too small. In addition, we should

emphasize that the initial state x(t0) has a great influence on the convergence behavior

of ∥x(t) − x∗∥.

To end this section, we answer a natural question: are there advantages of our pro-

posed neural network compared to the existing ones? To answer this, we summarize what

we have observed from numerical experiments and theoretical results as below.

• We compare our neural network model with some existing models which also work

for NCP, for instance, the ones used in [6, 32, 33]. At first glance, the neural network

models based on projection in [6, 32, 33] look having lower complexity. However,

we observe that the difference of the numerical performance is very marginal by

testing MCPLIB benchmark problems.

• Our proposed model seems having better properties from theoretical view. Note

that there requires monotonicity (strong monotonicity) of F to guarantee the

Lyapunov stability (exponential stability) of the neural network models used in

[6, 32, 33]. In contrast, such conditions are not needed for our neural network

model. In fact, it can be verified that all F ’s are non-monotone in previous exam-

ples except Example 5.2 (by checking the positive semi-definiteness of their Jacobian

matrices).
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• For the following special NCP:

x = (x1, x2, x3) ≥ 0, F (x) = (x1,−x2,−x3) ≥ 0, ⟨x, F (x)⟩ = x2
1 − x2

2 − x2
3 = 0,

it is easy to verify that the unique solution is (0, 0, 0) which can be solved easily

by our neural network model. But, the solution trajectory diverges by using the

model in [32].

• Changing initial points may not having much effect for our neural network model,

whereas it does for other existing models. For instance, choosing

x0 = (12,−12, 12,−12, 12) as the initial point in Example 5.1 causes the divergence

of solution trajectory solved by the neural network model used in [32], while it does

not affect anything by our neural network model.

6 Conclusions

In this paper, we have studied a (class of) neural network based on the generalized

FB function ϕp defined as in (5). We establish the Lyapunov stability, the asymptotic

stability, and the exponential stability for the neural network. In addition, we also analyze

the influence of the parameter p on the convergence rate of the trajectory (or the local

convergence behavior of the error ∥x(t)−x∗∥) and obtain that a larger p leads to a better

convergence rate. This agrees with the result obtained by [2] for a descent-type method

based on ϕp, which also indicates how to choose a suitable p in practice. Numerical

experiments verify the obtained theoretical results. The advantages of our proposed

neural network compared to other existing neural networks are reported as well. One

future topic is to modify the proposed neural network model for various optimization

problems and establish its related stability accordingly.
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Figure 2: Convergence behavior of the error ∥x(t) − x∗∥ in Example 5.1 with given x0.
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Figure 3: Convergence behavior of the error ∥x(t) − x∗∥ in Example 5.2 with given x0.
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Figure 4: Convergence behavior of the error ∥x(t) − x∗∥ in Example 5.3 with given x0.
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Figure 5: Convergence behavior of the error ∥x(t) − x∗∥ in Example 5.4 with given x0.
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Figure 6: Convergence behavior of ∥x(t) − x∗∥ in Example 5.1 with x0 = [0, 0, 0, 0, 0].
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Figure 7: Convergence behavior of ∥x(t)−x∗∥ in Example 5.1 with three different initial

points x
(1)
0 , x
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0 , and x

(3)
0 (p = 1.8).
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Figure 8: Transient behavior of x(t) of the neural network with 6 random initial points

and p = 1.8 in Example 5.1.
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Figure 9: Transient behavior of x(t) of the neural network with 6 random initial points

and p = 1.4 in Example 5.2.
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Figure 10: Transient behavior of x(t) of the neural network with 6 random initial points

and p = 2.4 in Example 5.3.
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Figure 11: Transient behavior of x(t) of the neural network with 9 random initial points

and p = 1.2 in Example 5.4.
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Figure 12: Transient behavior of x(t) of the neural network with 3 random initial points

and p = 1.2 in Example 5.4.
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