
Comput Optim Appl (2008) 40: 389–404
DOI 10.1007/s10589-007-9086-0

A family of NCP functions and a descent method
for the nonlinear complementarity problem

Jein-Shan Chen · Shaohua Pan

Received: 13 May 2006 / Revised: 20 November 2006 / Published online: 23 October 2007
© Springer Science+Business Media, LLC 2007

Abstract In last decades, there has been much effort on the solution and the analy-
sis of the nonlinear complementarity problem (NCP) by reformulating NCP as an
unconstrained minimization involving an NCP function. In this paper, we propose a
family of new NCP functions, which include the Fischer-Burmeister function as a
special case, based on a p-norm with p being any fixed real number in the interval
(1,+∞), and show several favorable properties of the proposed functions. In addi-
tion, we also propose a descent algorithm that is indeed derivative-free for solving
the unconstrained minimization based on the merit functions from the proposed NCP
functions. Numerical results for the test problems from MCPLIB indicate that the de-
scent algorithm has better performance when the parameter p decreases in (1,+∞).
This implies that the merit functions associated with p ∈ (1,2), for example p = 1.5,
are more effective in numerical computations than the Fischer-Burmeister merit func-
tion, which exactly corresponds to p = 2.

Keywords NCP · NCP function · Merit function · Descent method

1 Introduction

The nonlinear complementarity problem (NCP) is to find a point x ∈ R
n such that

x ≥ 0, F (x) ≥ 0, 〈x,F (x)〉 = 0, (1)
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where 〈·, ·〉 is the Euclidean inner product and F = (F1,F2, . . . ,Fn)
T is a map from

R
n to R

n. We assume that F is continuously differentiable throughout this paper.
The NCP has attracted much attention due to its various applications in operations
research, economics, and engineering [6, 12, 18].

There have been many methods proposed for solving the NCP [9, 12, 18]. Among
which, one of the most popular and powerful approaches that has been studied inten-
sively recently is to reformulate the NCP as a system of nonlinear equations [17, 24]
or as an unconstrained minimization problem [5, 7, 10, 14–16, 23]. Such a function
that can constitute an equivalent unconstrained minimization problem for the NCP is
called a merit function. In other words, a merit function is a function whose global
minima are coincident with the solutions of the original NCP. For constructing a merit
function, the class of functions, so-called NCP-functions and defined as below, serves
an important role.

Definition 1.1 A function φ : R
2 → R is called an NCP-function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

Over the past two decades, a variety of NCP-functions have been studied, see
[9, 20] and references therein. Among which, a popular NCP-function intensively
studied recently is the well-known Fischer-Burmeister NCP-function [7, 8] defined
as

φ(a, b) =
√

a2 + b2 − (a + b). (3)

With the above characterization of φ, the NCP is equivalent to a system of nonsmooth
equations:

�(x) =
⎛

⎝
φ(x1,F1(x))

...

φ(xn,Fn(x))

⎞

⎠ = 0. (4)

Then the function � : R
n → R+ defined by

�(x) := 1

2
‖�(x)‖2 = 1

2

n∑

i=1

φ(xi,Fi(x))2 (5)

is a merit function for the NCP, i.e., the NCP can be recast as an unconstrained mini-
mization:

min
x∈Rn

�(x). (6)

In this paper, we propose and investigate a family of new NCP functions based on
the Fischer-Burmeister function (3). In particular, we define φp : R

2 → R by

φp(a, b) := ‖(a, b)‖p − (a + b), (7)

where p is any fixed real number in the interval (1,+∞) and ‖(a, b)‖p denotes the
p-norm of (a, b), i.e., ‖(a, b)‖p = p

√|a|p + |b|p . In other words, in the function φp ,



A family of NCP functions and a descent method 391

we replace the 2-norm of (a, b) in the Fischer-Burmeister function (3) by a more
general p-norm with p ∈ (1,+∞). The function φp is still an NCP-function as was
noted in Tseng’s paper [21]. Nonetheless, to our knowledge, there was no further
study on this family of NCP functions except for p = 2. We aim to explore and study
properties of φp in this paper. More specifically, we define ψp : R

2 → R+ by

ψp(a, b) := 1

2
|φp(a, b)|2. (8)

For any given p > 1, the function ψp is a nonnegative NCP-function and smooth on
R

2 as will be seen in Sect. 3. Analogous to �, the function �p : R
n → R

n given as

�p(x) =
⎛

⎝
φp(x1,F1(x))

...

φp(xn,Fn(x))

⎞

⎠ (9)

yields a family of merit functions �p : R
n → R for the NCP for which

�p(x) := 1

2
‖�p(x)‖2 = 1

2

n∑

i=1

φp(xi,Fi(x))2 =
n∑

i=1

ψp(xi,Fi(x)). (10)

As will be seen later, �p for any given p > 1 is a continuously differentiable merit
function for the NCP. Therefore, classical iterative methods such as Newton method
can be applied to the unconstrained smooth minimization of the NCP, i.e.,

min
x∈Rn

�p(x). (11)

On the other hand, derivative-free methods [22] have also attracted much attention
which do not require computation of derivatives of F . Derivative-free methods, tak-
ing advantages of particular properties of a merit function, are suitable for problems
where the derivatives of F are not available or expensive.

In this paper, we also study a derivative-free descent algorithm for solving the NCP
based on the merit function �p . The algorithm is shown to be convergent for strongly
monotone NCPs. In addition, we also do numerical experiments with three specific
merit functions �1.5, �2 and �3 for the test problems from MCPLIB. Numerical
results show that the descent algorithm has better performance as p decreases in the
interval (1,+∞). This means that a more effective NCP function than the Fischer-
Burmeister function, at lest in numerical computations, can be obtained by setting
p ∈ (1,2) in φp(a, b).

Throughout this paper, R
n denotes the space of n-dimensional real column vectors

and T denotes transpose. For any differentiable function f : R
n → R, ∇f (x) denotes

the gradient of f at x. For any differentiable mapping F = (F1, . . . ,Fm)T : R
n →

R
m, ∇F(x) = [∇F1(x) · · ·∇Fm(x)] denotes the transpose Jacobian of F at x. We

denote by ‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. In addition,
unless otherwise stated, we always assume p in the sequel is any fixed real number
in (1,+∞).
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2 Preliminaries

In this section, we recall some background concepts and materials which will play an
important role in the subsequent analysis.

Definition 2.1 Let F : R
n → R

n, then

(a) F is monotone if 〈x − y,F (x) − F(y)〉 ≥ 0, for all x, y ∈ R
n.

(b) F is strictly monotone if 〈x − y,F (x) − F(y)〉 > 0, for all x, y ∈ R
n and x 
= y.

(c) F is strongly monotone with modulus μ > 0 if 〈x − y,F (x) − F(y)〉 ≥
μ‖x − y‖2, for all x, y ∈ R

n.
(d) F is a P0-function if max 1≤i≤n

xi 
=yi

(xi − yi)(Fi(x) − Fi(y)) ≥ 0, for all x, y ∈ R
n

and x 
= y.
(e) F is a P -function if max1≤i≤n(xi −yi)(Fi(x)−Fi(y)) > 0, for all x, y ∈ R

n and
x 
= y.

(f) F is a uniform P -function with modulus μ > 0 if max1≤i≤n(xi − yi)(Fi(x) −
Fi(y)) ≥ μ‖x − y‖2, for all x, y ∈ R

n.
(g) ∇F(x) is uniformly positive definite with modulus μ > 0 if dT ∇F(x)d ≥ μ‖d‖2,
for all x ∈ R

n and d ∈ R
n.

(h) F is Lipschitz continuous if there exists a constant L > 0 such that ‖F(x) −
F(y)‖ ≤ L‖x − y‖, for all x, y ∈ R

n.

From the above definitions, it is obvious that strongly monotone functions are
strictly monotone, and strictly monotone functions are monotone. Moreover, F is a
P0-function if F is monotone and F is a uniform P -function with modulus μ > 0
if F is strongly monotone with modulus μ > 0. In addition, when F is continuously
differentiable, we have the following conclusions:

1. F is monotone if and only if ∇F(x) is positive semidefinite for all x ∈ R
n.

2. F is strictly monotone if ∇F(x) is positive definite for all x ∈ R
n.

3. F is strongly monotone if and only if ∇F(x) is uniformly positive definite.

Next, we recall the definition of P0-matrix and P -matrix.

Definition 2.2 A matrix M ∈ R
n×n is a

(a) P0-matrix if each of its principal minors is nonnegative.
(b) P -matrix if each of its principal minors is positive.

It is obvious that every P -matrix is also a P0-matrix. Furthermore, it is known that
the Jacobian of every continuously differentiable P0-function is a P0-matrix.

Finally, we state one of the characterizations of P0-matrices that will be used later,
and for more properties about P -matrix and P0-matrix, please refer to [4].

Lemma 2.1 A matrix M ∈ R
n×n is a P0-matrix if and only if for every nonzero

vector x there exists an index i such that xi 
= 0 and xi(Mx)i ≥ 0.
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3 A family of NCP functions and their properties

In this section, we study a family of NCP functions φp defined as (7) with p > 1,
which are indeed variants of Fischer-Burmeister function, and show that these
functions have several favorable properties analogous to what Fischer-Burmeister
function has. We first present some similar properties of φp to those for Fischer-
Burmeister function.

Proposition 3.1 Let φp : R
2 → R be defined as (7) with p being any fixed real num-

ber in the interval (1,+∞). Then

(a) φp is an NCP-function, i.e., it satisfies (2).
(b) φp is sub-additive, i.e., φp(w + w′) ≤ φp(w) + φp(w′) for all w,w′ ∈ R

2.
(c) φp is positive homogeneous, i.e., φp(αw) = αφp(w) for all w ∈ R

2 and α ≥ 0.
(d) φp is convex, i.e., φp(αw + (1 − α)w′) ≤ αφp(w) + (1 − α)φp(w′) for all
w,w′ ∈ R

2 and α ∈ 0.
(e) φp is Lipschitz continuous with L1 = √

2 + 2(1/p−1/2) when 1 < p < 2, and with
L2 = 1 + √

2 when p ≥ 2. In other words, |φp(w) − φp(w′)| ≤ L1‖w − w′‖ when
1 < p < 2 and |φp(w) − φp(w′)| ≤ L2‖w − w′‖ when p ≥ 2 for all w,w′ ∈ R

2.

Proof (a) The proof can be seen in [21, page 20]. For completeness, we here include
it. Consider any a ≥ 0 and b ≥ 0 satisfying ab = 0. Then, we have either a = 0 or
b = 0. This implies that φp(a, b) = p

√|a|p − a or φp(a, b) = p
√|b|p − b, and conse-

quently φp(a, b) = 0. Conversely, consider any (a, b) ∈ R
2 satisfying φp(a, b) = 0.

Then there must hold a ≥ 0 and b ≥ 0, otherwise we have p
√|a|p + |b|p > (a + b)

and hence φp(a, b) > 0. Now we prove that one of a and b must be 0. If not,
then ‖(a, b)‖p < ‖(a, b)‖1 = a + b, which obviously contradicts the fact that
φp(a, b) = 0. The two sides show that φp is indeed an NCP-function.

(b) Let w = (a, b) and w′ = (c, d). Then

φp(w + w′) = ‖(a, b) + (c, d)‖p − (a + b + c + d)

≤ ‖(a, b)‖p + ‖(c, d)‖p − (a + b) − (c + d)

= φp(a, b) + φp(c, d) = φp(w) + φp(w′),

where the inequality is true since the triangle inequality holds for p-norm when
p > 1.

(c) Let w = (a, b) ∈ R
2 and α > 0. Then the proof follows by

φp(αw) = p
√|αa|p + |αb|p − (αa + αb) = α p

√|a|p + |b|p − α(a + b) = αφp(w).

(d) This is true by part (b) and part (c).
(e) Let w = (a, b) and w′ = (c, d), we have

|φp(w) − φp(w′)| = |‖(a, b)‖p − (a + b) − ‖(c, d)‖p + (c + d)|
≤ |‖(a, b)‖p − ‖(c, d)‖p| + |a − c| + |b − d|
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≤ ‖(a, b) − (c, d)‖p + √
2
√

|a − c|2 + |b − d|2

≤ ‖(a, b) − (c, d)‖p + √
2‖(a, b) − (c, d)‖

= ‖w − w′‖p + √
2‖w − w′‖.

Then, from the inequality as below (see [13, (1.3)]),

‖x‖p2 ≤ ‖x‖p1 ≤ n(1/p1−1/p2)‖x‖p2 for x ∈ R
n and 1 < p1 < p2,

we obtain the desired results. �

As below, φp has more further properties which are key to proving results of the
subsequent section.

Lemma 3.1 Let φp : R
2 → R be defined as (7) where p > 1. If {(ak, bk)} ⊆ R

2

with (ak → −∞) or (bk → −∞) or (ak → ∞ and bk → ∞), then we have
|φp(ak, bk)| → ∞ for k → ∞.

Proof This result has been mentioned in [21, p. 20]. �

Next, we study another family of NCP functions ψp : R
2 → R+ defined by (8).

This class of functions will lead the NCP to a reformulation of unconstrained mini-
mization. In other words, they are a family of merit functions for the NCP. Further-
more, they have some favorable properties shown as below. Particularly, ψp for any
given p > 1 is continuously differentiable everywhere whereas φp is not differen-
tiable everywhere.

Proposition 3.2 Let φp,ψp be defined as (7) and (8), respectively, where p is any
fixed real number in the interval (1,+∞). Then

(a) ψp is an NCP-function, i.e., it satisfies (2).
(b) ψp(a, b) ≥ 0 for all (a, b) ∈ R

2.
(c) ψp is continuously differentiable everywhere.
(d) ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for all (a, b) ∈ R

2. The equality holds if and only
if φp(a, b) = 0.

(e) ∇aψp(a, b) = 0 ⇐⇒ ∇bψp(a, b) = 0 ⇐⇒ φp(a, b) = 0.

Proof (a) Since ψp(a, b) = 0 if and only if φp(a, b) = 0, the desired result is satisfied
by Proposition 3.1(a).

(b) It is clear by definition of ψp .
(c) From direct computation, we obtain ∇aψp(0,0) = ∇bψp(0,0) = 0. For

(a, b) 
= (0,0),

∇aψp(a, b) =
(

sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b),

∇bψp(a, b) =
(

sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b)

(12)
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where sgn(·) is the sign function. Clearly,

∣∣∣∣
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

∣∣∣∣ ≤ 1 and

∣∣∣∣
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

∣∣∣∣ ≤ 1 (13)

(i.e., uniformly bounded) and moreover φp(a, b) → 0 as (a, b) → (0,0). Therefore,
we have ∇aψp(a, b) → 0 and ∇bψp(a, b) → 0 as (a, b) → (0,0). This means that
ψp is continuously differentiable everywhere.

(d) From part (c), we know that if (a, b) = (0,0), it is clear that ∇aψp(a, b) ·
∇bψp(a, b) = 0 and ψp(a, b) = 0. Now we assume that (a, b) 
= (0,0). Then,

∇aψp(a, b) · ∇bψp(a, b)

=
(

sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φ2

p(a, b). (14)

Again, from (13), it follows immediately that ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for all

(a, b) ∈ R
2. The equality holds if and only if φp(a, b) = 0, sgn(a)·|a|p−1

‖(a,b)‖p−1
p

= 1 or

sgn(b)·|b|p−1

‖(a,b)‖p−1
p

= 1. In fact, if sgn(a)·|a|p−1

‖(a,b)‖p−1
p

= 1, then we have a > 0 and |a| = ‖(a, b)‖p ,

which leads to b = 0 and hence φp(a, b) = p
√|a|p − a = a − a = 0. Similarly, we

have φp(a, b) = 0 if sgn(b)·|b|p−1

‖(a,b)‖p−1
p

= 1. Thus, we conclude that the equality holds if

and only if φp(a, b) = 0.
(e) It is already seen in the last part of proof for part (d). �

It was shown that if F is monotone [10] or a P0-function [5], then any stationary
point of � is a global minima of the unconstrained minimization minx∈Rn �(x), and
hence solves the NCP. Moreover, it was also shown that if F is strongly monotone
[10] or uniform P -function [5], then the level sets of � are bounded. In what follows,
we will present and prove analogous results for �p under the same conditions as in
[5, 10]. The ideas for proving the following propositions are borrowed from those
analogous results in [5, 10].

Proposition 3.3 Let �p : R
n → R be defined as (10) with p > 1. Then �p(x) ≥ 0

for all x ∈ R
n and �p(x) = 0 if and only if x solves the NCP (1). Moreover, suppose

that the NCP (1) has at least one solution. Then x is a global minimizer of �p if and
only if x solves the NCP (1).

Proof The results directly follow from Proposition 3.2. �

Proposition 3.4 Let �p : R
n → R be defined as (10) with p > 1. Assume F is ei-

ther monotone or P0-function, then every stationary point of �p is a global minima
of (11); and therefore solves the NCP (1).
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Proof (I) For the assumption of monotonicity of F , suppose that x∗ is a stationary
point of �p . Then we have ∇�p(x∗) = 0 which implies that

n∑

i=1

(∇aψp(x∗
i , Fi(x

∗))ei + ∇bψp(x∗
i , Fi(x

∗))∇Fi(x
∗)) = 0, (15)

where ei = (0, . . . ,1, . . . ,0)T . We denote ∇aψp(x∗,F (x∗)) = (. . . ,∇aψp(x∗
i ,

Fi(x
∗)), . . .)T and ∇bψp(x∗,F (x∗)) = (. . . ,∇bψp(x∗

i , Fi(x
∗)), . . .)T , respectively.

Then (15) can be abbreviated as

∇aψp(x∗,F (x∗)) + ∇F(x∗)∇bψp(x∗,F (x∗)) = 0. (16)

Now, multiplying (16) by ∇bψp(x∗,F (x∗))T leads to

n∑

i=1

(∇aψp(x∗
i , Fi(x

∗)) · ∇bψp(x∗
i , Fi(x

∗)))

+ ∇bψp(x∗,F (x∗))T ∇F(x∗)∇bψp(x∗,F (x∗)) = 0. (17)

Since F is monotone, ∇F(x∗) is positive semidefinite, the second term of (17) is
nonnegative. Moreover, each term in the first summation of (17) is nonnegative as
well due to Proposition 3.2(d). Therefore, we have

∇aψp(x∗
i , Fi(x

∗)) · ∇aψp(x∗
i , Fi(x

∗)) = 0, ∀i = 1,2, . . . , n,

which yields φp(x∗
i , Fi(x

∗)) = 0 for all i = 1,2, . . . , n by Proposition 3.2(e). Thus,
�p(x∗) = 0 which says x∗ is a global minimizer of (11).

(II) If F is P0-function and suppose x∗ is a stationary point of �p . Then
∇�p(x∗) = 0 which yields (16). Notice that ∇aψp(a, b) and ∇bψp(a, b) are given as
forms of (12). If we denote A(x∗) and B(x∗) the possibly multivalued n×n diagonal
matrices whose diagonal elements are given by

Aii(x
∗) = sgn(x∗

i ) · |x∗
i |p−1

‖(x∗
i , Fi(x∗))‖p−1

p

if (x∗
i , Fi(x

∗)) 
= (0,0)

and

Bii(x
∗) = sgn(Fi(x

∗)) · |Fi(x
∗)|p−1

‖(x∗
i , Fi(x∗))‖p−1

p

if (x∗
i , Fi(x

∗)) 
= (0,0).

If (x∗
i , Fi(x

∗)) = (0,0) then we let A(x∗) = B(x∗) = I , i.e., the n×n identity matrix.
With the notions of A(x∗),B(x∗) and (12), (16) can be rewritten as

[
(A(x∗) − I ) + ∇F(x∗)(B(x∗) − I )

]
�p(x∗) = 0. (18)

We want to prove that �p(x∗) = 0 (and hence �p(x∗) = 0). Suppose not, i.e.,
�p(x∗) 
= 0. Recall that �p(x∗) = 0 if and only if (1) is satisfied and the ith com-
ponent of �p(x∗) is φp(x∗

i , Fi(x
∗)). Thus, φp(xi,Fi(x

∗)) 
= 0 means one of the fol-
lowing occurs:
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1. x∗
i 
= 0 and Fi(x

∗) 
= 0.
2. x∗

i = 0 and Fi(x
∗) < 0.

3. x∗
i < 0 and Fi(x

∗) = 0.

In every case, we have Bii(x
∗) 
= 1 (since Bii(x

∗) = 1 if and only if φp(x∗
i , Fi(x

∗)) =
0 by Proposition 3.2(d, e)), so that (Bii(x

∗) − 1) · φp(x∗
i , Fi(x

∗)) 
= 0. Similar argu-
ments apply for the vector (A(x∗) − I )�p(x∗). Thus, from the above, we can easily
verify that if �p(x∗) 
= 0 then (B(x∗) − I )�p(x∗) and (A(x∗) − I )�p(x∗) are both
nonzero. Moreover, both of their nonzero elements are in the same positions, and such
nonzero elements have the same sign. But, for (18) to hold, it would be necessary that
∇F(x∗) “revert the sign” of all the nonzero elements of (B(x∗) − I )�p(x∗), which
contradicts the fact that ∇F(x∗) is a P0-matrix by Lemma 2.1. �

Proposition 3.5 Let �p : R
n → R be defined as (10) with p > 1. Assume F is either

strongly monotone or uniform P -function, then the level sets

L(�p,γ ) := {x ∈ R
n | �p(x) ≤ γ }

are bounded for all γ ∈ R.

Proof (I) First, we consider the assumption of strong monotonicity of F . Suppose
there exists an unbounded sequence {‖xk‖}k∈K → ∞ with {xk}k∈K ⊆ L(�p,γ ) for
some γ ≥ 0, where K is a subset of N . We define the index set

J := {i ∈ {1,2, . . . , n} | {xk
i } is unbounded}.

Since {xk} is unbounded, J 
= ∅. Let {zk} denote a bounded sequence defined by

zk
i =

{
0, if i ∈ J,

xk
i , if i /∈ J.

Then from the definition of {zk} and the strong monotonicity of F , we obtain

μ
∑

i∈J

(xk
i )2 = μ‖xk − zk‖2

≤ 〈xk − zk,F (xk) − F(zk)〉

=
n∑

i=1

(xk
i − zk

i )(Fi(x
k) − Fi(z

k))

=
∑

i∈J

xk
i (Fi(x

k) − Fi(z
k))

≤
(∑

i∈J

(xk
i )2

)1/2 ∑

i∈J

|Fi(x
k) − Fi(z

k)|. (19)



398 J.-S. Chen, S. Pan

Since
∑

i∈J (xk
i )2 
= 0 for k ∈ K , then dividing by

∑
i∈J (xk

i )2 on both sides of (19)
yields

μ

(∑

i∈J

(xk
i )2

)1/2

≤
∑

i∈J

|Fi(x
k) − Fi(z

k)|, k ∈ K. (20)

On the other hand, we know {Fi(z
k)}k∈K is bounded (i ∈ J ) due to {zk}k∈K is

bounded and F is continuous. Therefore, from (20), we have

{|Fi0(x
k)|} → ∞ for some i0 ∈ J.

Also, {‖xk
i0
‖} → ∞ by the definition of the index set J . Thus, Lemma 3.1 yields

φp(xk
i0
,Fi0(x

k)) → ∞ as k → ∞.

But this contradicts {xk} ⊆ L(�p,γ ).
(II) If F is uniform P -function, then the proof almost follows the same arguments

as above. In particular, (19) is replaced by

μ
∑

i∈J

(xk
i )2 = μ‖xk − zk‖2

≤ max
1≤i≤n

(xk
i − zk

i )(Fi(x
k) − Fi(z

k))

= max
i∈J

xk
i (Fi(x

k) − Fi(z
k))

= xk
j0

(Fj0(x
k) − Fj0(z

k))

≤ |xk
j0

| · |Fj0(x
k) − Fj0(z

k)|, (21)

where j0 is one of the indices for which the max is attained. Then dividing by |xk
j0

|
on both sides of (21) and the proof follows. �

4 A descent method

In this section, we study a descent method for solving the unconstrained minimiza-
tion (11), which does not require the derivative of F involved in the NCP. In addition,
we prove a global convergence result for this derivative-free descent algorithm. More
precisely, we consider the search direction as below:

dk := −∇bψp(xk,F (xk)), (22)

where ∇bψp(xk,F (xk)) = (∇bψp(xk
1 ,F (xk

1 )), . . . ,∇bψp(xk
n,F (xk

n)))T . From the
following lemma, we see that dk is a descent direction of �p at xk under monotonic-
ity assumption.
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Lemma 4.1 Let xk ∈ R
n and F be a monotone function. Then the search direction

defined as (22) satisfies the descent condition ∇�p(xk)T dk < 0 as long as xk is not
a solution of the NCP (1). Moreover, if F is strongly monotone with modulus μ > 0,
then ∇�p(xk)T dk ≤ −μ‖dk‖2.

Proof Since ∇�p(xk) = ∇aψp(xk,F (xk)) + ∇F(xk)∇bψp(xk,F (xk)), we have
that

∇�p(xk)T dk = −
n∑

i=1

∇aψp(xk
i ,Fi(x

k)) · ∇bψp(xk
i ,Fi(x

k))

− (dk)T ∇F(xk)(dk). (23)

From the monotonicity of F , it follows that ∇F(xk) is positive semidefinite. There-
fore, the second term of (23) is nonnegative. Also, by Proposition 3.2(d), the
first term of (23) is nonnegative. Therefore, ∇�p(xk)T dk ≤ 0. We next prove
that ∇�p(xk)T dk < 0 by contradiction. Assume that ∇�p(xk)T dk = 0. Then
∇aψp(xk

i ,Fi(x
k)) · ∇bψp(xk

i ,Fi(x
k)) = 0 for all i which, by Proposition 3.2(d)

again, yields φp(xk
i ,Fi(x

k)) = 0. Thus, �p(xk,F (xk)) = 0 and �p(xk,F (xk)) = 0.
Consequently, xk solves the NCP (1). This obviously contradicts our assumption that
xk is not a solution of the NCP (1).

If F is strongly monotone with modulus μ > 0, then we have that

∇�p(xk)T dk ≤ −(dk)T ∇F(xk)(dk) ≤ −μ‖dk‖2,

where the first inequality follows from (23) and Proposition 3.2(d). �

The above lemma motivates the following descent algorithm.

Algorithm 4.1

(Step 0) Given a real number p > 1 and x0 ∈ R
n. Choose the parameters ε ≥ 0,

σ ∈ (0,1) and β ∈ (0,1). Set k := 0.
(Step 1) If �p(xk) ≤ ε, then Stop.
(Step 2) Let

dk := −∇bψp(xk,F (xk)).

(Step 3) Compute a step-size tk := βmk , where mk is the smallest nonnegative integer
m satisfying the Armijo-type condition:

�p(xk + βmdk) ≤ (1 − σβ2m)�p(xk). (24)

(Step 4) Set xk+1 := xk + tkd
k , k := k + 1 and Go to Step 1.

We next show the global convergence result for Algorithm 4.1 under the strongly
monotone assumption of F . To this end, we assume that the parameter ε used in
Algorithm 4.1 is set to be zero and Algorithm 4.1 generates an infinite sequence {xk}.
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Proposition 4.1 Suppose that F is strongly monotone. Then the sequence {xk} gen-
erated by Algorithm 4.1 has at least one accumulation point and any accumulation
point is a solution of the NCP (1).

Proof Firstly, we show that there exists a nonnegative integer mk in Step 3 of Algo-
rithm 4.1 whenever xk is not a solution. Assume that the conclusion does not hold.
Then for any m > 0,

�p(xk + βmdk) − �p(xk) > −σβ2m�p(xk).

Dividing by βm on both sides and taking the limit m → ∞ yield

〈∇�p(xk), dk〉 ≥ 0.

Since F is strongly monotone, this obviously contradicts Lemma 4.1. Hence, we can
find an integer mk in Step 3.

Secondly, we show that the sequence {xk} generated by Algorithm 4.1 has at least
one accumulation point. By the descent property of Algorithm 4.1, the sequence
{�p(xk)} is decreasing. Thus, by Proposition 3.5, the generated sequence is bounded
and hence it has at least one accumulation point.

Finally, we prove that every accumulation point is a solution of the NCP (1). Let
x∗ be an arbitrary accumulation point of the generated sequence {xk}. Then there
exists a subsequence {xk}k∈K converging to x∗. We know that −∇bψp

( · ,F (·)) is
continuous since ψp is continuously differentiable, therefore, {dk}k∈K → d∗. Next,
we need to discuss two cases. First, we consider the case where there exists a constant
β̄ such that βmk ≥ β̄ > 0 for all k ∈ K . Then, from (24), we obtain

�p(xk+1) ≤ (1 − σ β̄2)�p(xk)

for all k ∈ K and the entire sequence {�p(xk)} is decreasing. Thus, we have
�p(x∗) = 0 (by taking the limit) which says x∗ is a solution of the NCP (1). Now, we
consider the other case where there exists a further subsequence such that βmk → 0.
Note that by Armijo’s rule (24) in Step 3, we have

�p(xk + βmk−1 · dk) − �p(xk) > −σβ2(mk−1)�p(xk).

Dividing both sides by βmk−1 and passing to the limit on the subsequence, we obtain

〈∇�p(x∗), d∗〉 ≥ 0

which implies that x∗ is a solution of the NCP (1) by Lemma 4.1. �

5 Numerical experiments

We implemented Algorithm 4.1 with our code in MATLAB 6.1 for all test problems
with all available starting points in MCPLIB [1]. All numerical experiments were
done at a PC with CPU of 2.8 GHz and RAM of 512 MB. In order to improve the
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numerical behavior of Algorithm 4.1, we replaced the standard (monotone) Armijo-
rule by nonmonotone line search as described in [11], i.e., we computed the smallest
nonnegative integer l such that

�p(xk + βldk) ≤Wk − σβ2l�p(xk),

where Wk is given by

Wk = max
j=k−mk,...,k

�p(xj )

and where, for given nonnegative integers m̂ and s, we set

mk =
{

0 if k ≤ s,

min{mk−1 + 1, m̂} otherwise.

Throughout the experiments, we use m̂ = 5 and s = 5. Moreover, we use the parame-
ters σ = 1.0e−10 and β = 0.2 in Algorithm 4.1. We terminated our iteration when
the number of iteration is over 500 000 or the steplength is less than 1.0e−10 or one
of the following conditions is satisfied:

(C1) �p(xk) ≤ 1.0e−5 and (xk)T F (xk) ≤ 5.0e−3;
(C2) �p(xk) ≤ 3.0e−7 and (xk)T F (xk) ≤ 3.0e−2;
(C3) �p(xk) ≤ 3.0e−6 and (xk)T F (xk) ≤ 1.0e−2.

Our computational results are summarized in Tables 1, 2, 3 (see the Appendix).
In these tables, the first column lists the name of the problems and the starting point
number in MCPLIB, Gap denotes the value of xT F (x) at the final iteration, NF
indicates the number of function evaluations of the merit function �p for solving each
problem, and Time represents the CPU time in seconds for solving each problem.

The results reported in Tables 1–3 show that our descent method based on the merit
function �1.5(x), �2(x) or �3(x) was able to solve most complementarity prob-
lems in MCPLIB. More precisely, there are seven failures (pgvon105, pgvon106,
powell, scarfanum, scarfasum, scarfbnum, scarfbsum) for Algorithm 4.1 due to
a too small steplength. After a careful check, we find the direction d defined in Al-
gorithm 4.1 is not a descent one for these problems. In fact, the seven problems are
regarded as difficult ones for those Newton type algorithms [19, 20]. In addition, we
may see that the descent algorithm using the merit function �1.5(x) has better numer-
ical results than using the Fischer-Burmeister function. Particularly, it appears from
Tables 1–3 that the descent algorithm based on �p(x) will take more function eval-
uations and yield larger value of Gap when the parameter p increases. A reasonable
interpretation for this is that the value of �p(x) become smaller when p increases and
hence causes some difficulty for the descent Algorithm 4.1. This also implies that the
performance of Algorithm 4.1 will become worse when the parameter p increases.
This is an important new discovery, which has big contribution in constructing new
NCP-functions, not found in the literature to our best knowledge.
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6 Final remarks

In this paper, we have studied a family of NCP-functions φp(a, b) which include the
well-known Fischer-Burmeister function as a special case and have shown that this
class of functions enjoy some favorable properties as other NCP-functions do. In ad-
dition, we propose a descent method for the unconstrained minimization (11) which
is a reformulation of the NCP via the proposed NCP-functions. Numerical results
for the test problem in MCPLIB have shown this method is promising when �p(x)

is specified as �1.5(x), �2(x) or �3(x). Moreover, from our numerical implemen-
tations, there indicates that the performance of the descent method become better
when p decreases, which is a new and important discovery. This implies that there
does exist new NCP-function which is better than Fischer-Burmeister function. It is
yet unknown whether similar phenomena happens in different algorithm, which is an
interesting future topic.

There still are many issues for this NCP-function to be explored like those for
other NCP-functions done in the literature. For instance, it would be of interest to
know the semismoothness property of ψp and the Lipschitz continuous property of
∇ψp . In fact, some of them are recently studied in [2, 3]. In addition, it is interesting
to know whether this class of NCP-functions can be used for SDCP and SOCCP.
Some researchers have started this issue but no update reports by now. We leave them
for future research topics.

Acknowledgements The authors are grateful to Professor P. Tseng for his suggestion on studying this
family of NCP-functions and thank for the referees for their careful reading and helpful suggestions.

Appendix

Table 1 Numerical results for MCPLIB problems based on �1.5(x), �2(x) and �3(x)

�1.5(x) �2(x) �3(x)

Problem Gap NF Time Gap NF Time Gap NF Time

bertsekas(1) 9.99e–3 63 094 30.74 3.00e–2 86 826 36.42 3.00e–2 71 127 35.92

bertsekas(2) 3.00e–2 63 764 34.92 3.00e–2 65 801 31.39 1.00e–2 89 556 49.22

bertsekas(3) 3.00e–2 318 308 176.4 3.00e–2 322 751 161.5 3.00e–2 416 869 231.8

billups 3.35e–19 25 0.00 3.35e–19 25 0.00 3.35e–19 25 0.00

colvdual(1) 1.48e–2 69 675 41.84 2.33e–2 70 393 36.72 3.00e–2 181 627 109.2

colvdual(2) 1.00e–2 34 266 21.36 9.98e–3 49 436 24.81 9.94e–3 53 895 32.13

colvnlp(1) 1.08e–2 206 856 104.1 1.43e–2 207 529 93.99 3.00e–2 221 400 117.23

colvnlp(2) 9.99e–3 11 390 5.37 9.99e–3 11 753 4.84 9.96e–3 11 964 5.83

cycle 1.14e–3 7 0.00 9.05e–6 5 0.00 2.81e–4 4 0.00

explcp 2.43e–3 5895 3.14 2.58e–3 6001 2.70 2.88e–3 6008 3.13

gafni(1) 2.15e–3 202 0.08 2.68e–3 203 0.06 4.65e-3 203 0.08

gafni(2) 2.08e–3 236 0.09 2.63e–3 229 0.08 4.64e-3 227 0.08

gafni(3) 2.05e–3 250 0.09 2.61e–3 240 0.08 4.62e-3 238 0.08
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Table 2 Numerical results for MCPLIB problems based on �1.5(x), �2(x) and �3(x)

�1.5(x) �2(x) �3(x)

Problem Gap NF Time Gap NF Time Gap NF Time

hanskoop(1) 2.86e–3 763 0.45 2.80e–3 2 322 1.58 2.77e–3 1 783 0.94

hanskoop(2) 2.86e–3 858 0.48 2.77e–3 2 224 1.36 2.77e–3 1 685 0.91

hanskoop(3) 2.03e–3 453 0.25 1.96e–3 1 105 0.66 1.50e–3 974 0.63

hanskoop(4) 2.04e-3 440 0.27 1.96e–3 1 082 0.66 1.20e–3 1 860 1.02

hanskoop(5) * * * * * * * * *

josephy(1) 3.72e–3 1 112 0.31 4.46e–3 1 150 0.31 6.91e–3 1 172 0.50

josephy(2) 1.00e–2 1 393 0.42 1.00e–2 5 104 1.36 1.00e–2 43 398 13.08

josephy(3) 1.00e–2 632 0.17 1.00e–2 1 373 0.36 1.00e–2 1 211 0.34

josephy(4) 1.00e–2 3 106 0.88 1.00e–2 15 801 4.67 1.25e–2 500 027 150.8

josephy(5) 2.34e–3 48 0.03 2.33e–3 47 0.02 2.42e–2 45 0.02

josephy(6) 1.00e–2 1 399 0.41 1.00e–2 5 114 1.36 1.00e–2 177 730 52.36

kojshin(1) 2.43e–2 16 827 4.89 2.42e–2 162 856 45.84 9.76e–2 500 001 148.8

kojshin(2) 2.42e–2 283 119 84.59 9.22e–2 500 001 142.6 6.51e–1 500 001 154.0

kojshin(3) 2.43e–2 23 533 6.98 2.42e–2 254 703 66.86 1.22e–1 500 001 158.0

kojshin(4) 6.98e–3 90 0.08 4.42e–3 553 0.13 3.73e–3 97 0.03

kojshin(5) 9.99e–3 4 340 1.23 9.76e–3 26 286 7.67 1.57e–2 500 001 152.3

kojshin(6) 2.41e–2 182 387 54.64 6.81e–2 50 0001 141.9 3.23e–1 500 001 150.8

The * in Table 2 means that the method fails for this problem.

Table 3 Numerical results for MCPLIB problems based on �1.5(x), �2(x) and �3(x)

�1.5(x) �2(x) �3(x)

Problem Gap NF Time Gap NF Time Gap NF Time

mathinum(1) 9.36e–3 167 0.05 9.64e–3 125 0.03 8.87e–3 122 0.03

mathinum(2) 6.27e–3 133 0.03 8.00e–3 127 0.03 5.60e–3 113 0.03

mathinum(3) 9.15e–3 111 0.03 8.62e–3 81 0.03 8.41e–3 83 0.02

mathinum(4) 8.99e–3 252 0.08 9.49e–3 136 0.03 8.71e–3 128 0.05

mathisum(1) 1.18e–3 109 142 31.84 2.70e–3 113 416 32.72 7.80e–3 500 056 152.7

mathisum(2) 1.20e–3 90 185 26.97 2.80e–3 102 412 29.98 7.90e–3 500 005 155.3

mathisum(3) 1.19e–3 109 323 32.34 2.84e–3 102 416 29.81 7.90e–3 500 004 153.5

mathisum(4) 1.20e–3 90 285 27.30 2.84e–3 102 417 29.81 7.90e–3 500 003 159.2

nash(1) 1.52e–2 4764 2.50 1.52e–2 4837 2.30 1.52e–2 4842 2.47

nash(2) 1.52e–2 4633 2.33 1.52e–2 4669 2.19 1.52e–2 4669 2.58

sppe(1) 3.00e–2 88 251 66.86 3.00e–2 88 378 57.52 3.00e–2 88 487 73.67

sppe(2) 3.00e–2 87 482 66.58 3.00e–2 87 460 59.30 3.00e–2 87 523 71.06

tobin(1) 2.55e–2 14 187 15.48 2.55e–2 14 348 14.44 2.56e-2 14 392 16.50

tobin(2) 2.72e–2 14 174 16.12 3.00e–2 14 467 13.61 2.10e–2 20 330 24.39
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