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We point out that the Schatten p-norm is different from the operator norm (matrix
norm) induced by lp-norm, which is given by ∥A∥p := sup∥x∥p=1 ∥Ax∥p, although
these two norms share the same notation. The readers can distinguish them from
the contexts, so we do not denote them by different symbols. It is also known that
the Schatten p-norm satisfies

• ∥A1A2∥1 ≤ ∥A1∥p ·∥A2∥q where 1
p+

1
q = 1 and p ∈ [1,∞] (Holder inequality).

• ∥A∥1 ≥ ∥A∥p1 ≥ ∥A∥p2 ≥ ∥A∥∞ where 1 ≤ p1 ≤ p2 ≤ ∞ (Monotonicity).

For more details and applications of the Schatten p-norm, please refer to [1, 2, 8,
14, 15] and references therein.

The second one is the so-called Ky Fan k-norm defined by

∥A∥(k) :=
k∑

i=1

(si(A)), 1 ≤ k ≤ n.

In other words, ∥A∥(k) is exactly the sum of the k largest singular values of A. In
addition, the Ky Fan 1-norm is the operator norm induced by the Euclidean norm;
and hence it is also called the operator 2-norm. For more details and applications
of the Ky Fan k-norm, please refer to [1, 2, 6, 8, 15] and references therein.

Now, we consider the space Sn of n × n real symmetric matrices. Under the
Jordan product X ◦ Y = 1

2(XY + Y X) and the bilinear form ⟨X,Y ⟩ := tr(XY ),
(Sn, ◦, ⟨·, ·⟩) forms a Euclidean Jordan algebra whose definition will be elaborated
in Section 2. Based on Spectral Decomposition Theorem [7, Theorem III.1.2], we
also note that the eigenvalues of A coincide with the spectral values of A ∈ Sn. It is
also known that Rn can be viewed as a Euclidean Jordan algebra under appropriate
Jordan product and inner product. This motivates us to study whether the Schatten
p-norms can be defined on Rn or not.

In this short paper, we shall define two types of Schatten p-norm on Rn and
investigate some inequalities about these two norms. The paper is organized as
below. In Section 2, we recall some basic definitions and properties about Euclidean
Jordan algebra. Under the standard inner product, two types of Euclidean Jordan
algebra over Rn are also established in Section 3. Moreover, some relationship about
these two norms are deduced as well.

2. Preliminary

In this section, we review the basic concepts and properties concerning Jordan
algebras and symmetric cones from the book [7] which are needed in the subsequent
analysis.

A Euclidean Jordan algebra is a finite dimensional inner product space (V, ⟨·, ·⟩)
(V for short) over the field of real numbers R equipped with a bilinear map (x, y) 7→
x ◦ y : V× V → V, which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
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(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V;
(iii) ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x, y, z ∈ V,

where x2 := x ◦ x, and x ◦ y is called the Jordan product of x and y. If a Jordan
product only satisfies the conditions (i) and (ii) in the above definition, the algebra
V is said to be a Jordan algebra. Moreover, if there is an (unique) element e ∈ V
such that x ◦ e = x for all x ∈ V, the element e is called the Jordan identity
in V. Note that a Jordan algebra does not necessarily have an identity element.
Throughout this paper, we assume that V is a Euclidean Jordan algebra with an
identity element e.

In the Euclidean Jordan algebra V, the set of squares K := {x2 : x ∈ V} is
called a symmetric cone [7, Theorem III.2.1], which means K is a self-dual closed
convex cone and, for any two elements x, y ∈ int(K), there exists an invertible linear
transformation Γ : V → V such that Γ(x) = y and Γ(K) = K. An element c ∈ V
is called an idempotent if c2 = c, and it is a primitive idempotent if it is nonzero
and cannot be written as a sum of two nonzero idempotents. Two idempotents
c, d are said to be orthogonal if c ◦ d = 0. In addition, we say that a finite set
{e(1), e(2), · · · , e(r)} of primitive idempotents in V is a Jordan frame if

e(i) ◦ e(j) = 0 for i ̸= j, and
r∑

i=1

e(i) = e.

Note that ⟨e(i), e(j)⟩ = ⟨e(i) ◦ e(j), e⟩ whenever i ̸= j. With the above, there has the
spectral decomposition of an element x in V.

Theorem 2.1 (Spectral Decomposition Theorem ([7, Theorem III.1.2])). Let V be
a Euclidean Jordan algebra. Then there is a number r such that, for every x ∈ V,
there exists a Jordan frame {e(1), · · · , e(r)} and real numbers λ1(x), · · · , λr(x) with

x = λ1(x)e
(1) + · · ·+ λr(x)e

(r).

Here, the numbers λi(x) (i = 1, · · · , r) are called the spectral values of x, the expres-

sion λ1(x)e
(1) + · · ·+ λr(x)e

(r) is called the spectral decomposition of x. Moreover,
tr(x) :=

∑r
i=1 λi(x) is called the trace of x, det(x) := λ1(x)λ2(x) · · ·λr(x) is called

the determinant of x, and r is called the rank of V.

3. Main results

In this section, we introduce two types of Euclidean Jordan algebra over Rn under
the standard inner product

⟨x, y⟩ := x1y1 + x2y2 + · · ·+ xnyn,

for any x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn.

(I). The first type of Jordan product is defined as

x • y = (x1y1, x2y2, . . . , xnyn).
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It is easy to check (Rn, •, ⟨·, ·⟩) forms a Euclidean Jordan algebra with the identity
element e = (1, 1, . . . , 1). Under this case, it is not a simple Euclidean Jordan
algebra. Indeed, it is a Cartesian product of simple Euclidean Jordan algebras. In
view of this, for all i = 1, 2, . . . , n, we denote ei the vector with the i-th component
is 1 and the others are all zeros. Then, each ei is a primitive idempotent in Rn and
the set {e1, e2, . . . , en} forms a Jordan frame. The induced symmetric cone is

Rn
+ := {(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n} .

Moreover, it is clear that for any x ∈ Rn,

x = x1e1 + x2e2 + . . .+ xnen.

On the other hand, from the Spectral Decomposition Theorem, we know the spectral
values of x are x1, x2, . . . , xn. In light of all the above observations, the first type
of Schatten p-norm ∥ · ∥p is defined as

(3.1) ∥x∥p :=

[
n∑

i=1

|xi|p
]1/p

, 1 ≤ p < ∞,

which coincides with the well-known lp-norm. Moreover, for p = ∞, the Schatten
p-norm becomes

∥x∥∞ = max
1≤i≤n

|xi|,

which coincides with the well-known supremum norm. From the coincidence, the
properties of the Schatten p-norm on Rn space can be easily obtained. As below,
we only state two of them, and the proofs are omitted because in this case, they are
the lp-norm exactly. In the literature, there are various nice proofs for these two
properties, see [11, 12].

Proposition 3.1. For any fixed x ∈ Rn, let ∥x∥p denote the first type of Schatten
p-norm on Rn given as in (3.1). Then, the function p 7→ ∥x∥p is a decreasing
function on [1,∞).

Proposition 3.2. For any fixed x ∈ Rn, let ∥x∥p denote the first type of Schatten
p-norm on Rn given as in (3.1). Then, for 1 ≤ p ≤ q ≤ ∞, there holds

(3.2) ∥x∥q ≤ ∥x∥p ≤ n
1
p
− 1

q · ∥x∥q.

(II). Now, we consider the second type of Jordan product which the induced
symmetric cone is the so-called second-order cone (or Lorentz cone). For the sim-
plicity of notation, we denote x = (x1, x̄) ∈ R × Rn−1 the vector in Rn, i.e., x̄ :=
(x2, x3, . . . , xn) is a vector in Rn−1. For any x = (x1, x̄), y = (y1, ȳ) ∈ R × Rn−1,
the second type of Jordan product is defined as

x ◦ y = (⟨x, y⟩, y1x̄+ x1ȳ).

We note that e = (1, 0) ∈ R × Rn−1 acts as the Jordan identity. Besides, this
Jordan product is not associative and Kn is not closed under this Jordan product.
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The induced symmetric cone is an important example of symmetric cones, which is
defined as follows:

Kn =
{
x = (x1, x̄) ∈ R× Rn−1 |x1 ≥ ∥x̄∥2

}
.

For any vector x = (x1, x̄) ∈ R× Rn−1, it can be decomposed as

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are the spectral values and the associated spectral

vectors of x, respectively, given by

λi(x) = x1 + (−1)i∥x̄∥2,

u(i)x =

{
1
2

(
1, (−1)i x̄

∥x̄∥2

)
if x̄ ̸= 0,

1
2

(
1, (−1)iw̄

)
if x̄ = 0.

for i = 1, 2 with w̄ being any vector in Rn−1 satisfying ∥w̄∥2 = 1. If x̄ ̸= 0, the
decomposition is unique. Here, we remark that for n = 1, the second-order cone
K1 reduces to the nonnegative real number R+ and the Jordan product is the basic
multiplication on R.

We say a few words about the discrepancy between (Rn, ◦, ⟨·, ·⟩) and (Rn, •, ⟨·, ·⟩).
Note that (Rn, ◦, ⟨·, ·⟩) is a simple Euclidean Jordan algebra, whereas the Euclidean
Jordan algebra (Rn, •, ⟨·, ·⟩) is not simple. As mentioned earlier, (Rn, •, ⟨·, ·⟩) can
be written as the direct sum of (R, ·). In fact, there are only five types of simple
Euclidean Jordan algebra [7]. For more details for second-order cones, please refers
to [3, 4, 5].

According to the structure of (Rn, ◦, ⟨·, ·⟩) , the second type of Schatten p-norm
on Rn space ought to be defined as

(3.3) |||x|||p :=

[
2∑

i=1

|λi(x)|p
]1/p

.

In a recent paper, Huang et. al [9, Theorem 3.6-3.7] (also see [10, 13] for Euclidean
Jordan algebra) established a trace version inequality via the trace version of Young
inequality:

[tr(|x+ y|p)]1/p ≤ [tr(|x|p)]1/p + [tr(|y|p)]1/p ,
where x, y ∈ Rn and p ≥ 1. By the definition of the second type of Schatten p-norm
on Rn given as in (3.3), it is not hard to verify that this inequality is equivalent to

(3.4) |||x+ y|||p ≤ |||x|||p + |||y|||p.
Hence, the functional x 7→ |||x|||p can actually define a norm on Rn space for p ≥ 1.
In particular, we note

(3.5) |||x|||2 =

[
2∑

i=1

|λi(x)|2
]1/2

=
√
2 · ∥x∥2.

Moreover, this norm ||| · |||p can be viewed as a norm by applying the first type
of Schatten p-norm to the vector (x1 − ∥x̄∥, x1 + ∥x̄∥) ∈ R2 which consists of the
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spectral values of x. Accordingly we immediately have the following inequality by
applying (3.2).

Proposition 3.3. For any x ∈ Rn, let |||x|||p denote the second type of Schatten
p-norm on Rn given as in (3.3). Then, for 1 ≤ p ≤ q ≤ ∞, there holds

|||x|||q ≤ |||x|||p ≤ 2
1
p
− 1

q · |||x|||q.

It is natural to ask if there is any relationship between these two types of Schatten
p-norm on Rn. We observe that each spectral value of x includes the term ∥x̄∥. This
leads us to separate the discussion into two cases: 1 ≤ p < 2 and 2 ≤ p.

Theorem 3.4. For any x ∈ Rn, let ∥x∥p denote the first type of Schatten p-norm
on Rn given as in (3.1) and |||x|||p denote the second type of Schatten p-norm on
Rn given as in (3.3). Then, for 1 ≤ p ≤ ∞, the following hold.

(a) For 1 ≤ p < 2, there holds

√
2n

1
2
− 1

p · ∥x∥p ≤ |||x|||p ≤ 2
1
p · ∥x∥p.

(b) For p ≥ 2, there holds

2
1
p · ∥x∥p ≤ |||x|||p ≤

√
2n

1
2
− 1

p · ∥x∥p.

Proof. (a) For 1 ≤ p < 2 and x ∈ Rn, we have

|||x|||p ≥ |||x|||2 =
√
2 · ∥x∥2 ≥

√
2n

1
2
− 1

p · ∥x∥p,

and

|||x|||p ≤ 2
1
p
− 1

2 · |||x|||2 = 2
1
p · ∥x∥2 ≤ 2

1
p · ∥x∥p,

where the inequalities hold by Proposition 3.3 and inequalities (3.2) and (3.5).

(b) For p ≥ 2 and x ∈ Rn, we have

|||x|||p ≤ |||x|||2 =
√
2 · ∥x∥2 ≤

√
2n

1
2
− 1

p · ∥x∥p.

and

|||x|||p ≥ 2
1
p
− 1

2 · |||x|||2 = 2
1
p · ∥x∥2 ≥ 2

1
p · ∥x∥p.

where the inequalities hold by Proposition 3.3 and inequalities (3.2) and (3.5) as
well. □

Now, we recall that a function Φ : Rn → R is called a symmetric gauge function
if

(i) Φ is a norm on the real space Rn;
(ii) Φ(σn(x)) = Φ(x) for all x ∈ Rn, where σn(x) is a permutation of the coor-

dinate of x;
(iii) Φ(δ1x1, δ2x2, . . . , δnxn) = Φ(x1, x2, . . . , xn) for δj = ±1;
(iv) Φ(1, 0, . . . , 0) = 1.
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We note from Problem II.5.12(iv) of [2, page 53] that for any x, y ∈ Rn
+, we have

Φ(x) ≤ Φ(y) whenever x↓ ≺ y↓,

where x↓ = (x↓1, x
↓
2, . . . , x

↓
n), y↓ = (y↓1, y

↓
2, . . . , y

↓
n) denotes the vectors obtained by

the rearranging the coordinates of x, y in the decreasing orders, respectively, and

x↓ ≺ y↓ means
∑k

j=1 x
↓
j ≤

∑k
j=1 y

↓
j for all 1 ≤ k ≤ n.

It is easy to check that the functional (λ1(x), λ2(x)) 7→ |||x|||p is a symmetric
gauge function on R2. For any x, y ∈ Rn, we say x is weakly majorized by y,
denoted by x ≺w y if λ(x)↓ ≺ λ(y)↓, that is,

λ2(x) ≤ λ2(y) and
2∑

i=1

λi(x) ≤
2∑

i=1

λi(y).

In light of these concepts, we achieve the following norm inequality.

Theorem 3.5. Let ||| · |||p denote the second type of Schatten p-norm on Rn given
as in (3.3). For any x, y ∈ Kn, there holds

x ≺w y =⇒ |||x|||p ≤ |||y|||p.

Proof. For any x, y ∈ Kn with x ≺w y, we note that both (λ1(x), λ2(x)) and
(λ1(y), λ2(y)) lie in R2

+, and λ(x)↓ ≺ λ(y)↓. Then, using Problem II.5.12(iv) [2,
page 53] we obtain the desired inequality since (λ1(x), λ2(x)) 7→ |||x|||p is a sym-
metric gauge function. □

In linear algebra, functional analysis and some other related areas of mathematics,
a quasinorm is often used in the analysis, which is similar to a norm except that
the triangle inequality is replaced by

∥x+ y∥ ≤ K(∥x∥+ ∥y∥)

for some K > 0. It is already known that for 0 < p < 1, the functional x 7→
(
∑n

i=1 |xi|p)
1
p defines a quasinorm ∥ · ∥p on Rn and satisfies

∥x+ y∥p ≤ 2
1
p (∥x∥p + ∥y∥p).

Meanwhile, a question arises from the above discussion. Is the second type of
Schatten p-norm ||| · |||p a quasinorm for 0 < p < 1 ? To answer this question, we
need the following technical lemma.

Lemma 3.6. Let a1, a2, . . . , an be nonnegative real numbers and 0 < p < 1. Then,
we have (

n∑
i=1

ai

)p

≤
n∑

i=1

api .

Proof. This is a fundamental result, please refer to [11] for a proof. □
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Theorem 3.7. Let ||| · |||p denote the second type of Schatten p-norm on Rn given
as in (3.3). For any x, y ∈ Rn and 0 < p < 1, there holds

|||x+ y|||p ≤ 2
1
p
−1

(|||x|||p + |||y|||p) .

Proof. We note that

|||x+ y|||p = (|λ1(x+ y)|p + |λ2(x+ y)|p)
1
p

≤ 2
1
p
−1

(|λ1(x+ y)|+ |λ2(x+ y)|)

≤ 2
1
p
−1

(|λ1(x)|+ |λ2(x)|+ |λ1(y)|+ |λ2(y)|)

≤ 2
1
p
−1
(
(|λ1(x)|p + |λ2(x)|p)

1
p + (|λ1(y)|p + |λ2(y)|p)

1
p

)
= 2

1
p
−1

(|||x|||p + |||y|||p) ,

where the three inequalities hold by the convexity of the function t 7→ t1/p, the
inequality (3.4) for p = 1, and Lemma 3.6, respectively. □

4. Concluding remark

In this paper, we have successfully extended the concept of Schatten p-norm on
matrices space to the setting of Rn space via Euclidean Jordan algebra. Two types
of Schatten p-norm on Rn space are defined and their connection is discussed. As a
matter of fact, Tao et al. [13, Theorem 4.1] establish that for p ≥ 1, the functional

x 7→

[
r∑

i=1

|λi(x)|p
]1/p

forms a trace p-norm in any Euclidean Jordan algebra with rank r. In view of
Theorem 3.7, we suspect that there is possibility to improve it although we cannot
get the proof done yet. Hence, we make a conjecture as below, which is for our
future study.

Conjecture 1. Let (V, ◦, ⟨·, ·⟩) be a Euclidean Jordan algebra of rank r. Then for
0 < p < 1, the functional

x 7→

[
r∑

i=1

|λi(x)|p
]1/p

is a quasinorm on V.
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