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Abstract. In this paper, we investigate the properties of the weighted second-order cone complementar-
ity problem (wSOCCP), which covers a wide range of complementarity problems with applications in
equilibrium problems from engineering and economics. We show that the column sufficient wSOCCP
with cross commutative property has a convex (perhaps empty) solution set. In particular, when the
weight vector is zero, the reverse implication is also true.
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1. INTRODUCTION

The weighted second-order cone complementarity problem (wSOCCP) is to find vectors
(x,s,y) ∈ Rn×Rn×Rm such that

x◦ s = w,
Ax+Bs+Cy = d,
x ∈K , s ∈K ,

(1.1)

where ◦ represents the Jordan product, A ∈ R(n+m)×n, B ∈ R(n+m)×n, C ∈ R(n+m)×m are given
matrices, d ∈ Rn+m is a given vector, w ∈K is a given weight vector, and

K = K n1×K n2×·· ·×K nr

with

n = n1 +n2 + · · ·+nr

is the Cartesian product of second-order cones (SOC) [1, 2]. Here the ni−dimensional SOC
K ni(i = 1, . . . ,r) is defined by

K ni = {xi = (xi0,xi) ∈ R×Rni−1 : xi0−‖xi‖ ≥ 0},
where ‖ · ‖ refers to the Euclidean norm. It is well known that the interior of the SOC K can
be characterized as

intK = intK n1× intK n2×·· ·× intK nr ,

where

intK ni = {xi = (xi0,xi) ∈ R×Rni−1 : xi0−‖xi‖> 0}
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for i = 1, . . . ,r. It is easy to verify that the SOC K is self-dual, i.e.,

K = K ∗ := {s ∈ Rn : sT x≥ 0, ∀x ∈K }.
We recall that the wSOCCP (1.1) is called monotone if

A∆x+B∆s+C∆y = 0 implies ∆xT
∆s≥ 0,

and it is called skew-symmetric if

A∆x+B∆s+C∆y = 0 implies ∆xT
∆s = 0.

For any matrix D ∈ R(n+m)×n whose columns form a basis of KerCT , the wSOCCP (1.1) is
equivalent to finding (x,s) such that

x◦ s = w,
Qx+Rs = a,
x ∈K , s ∈K ,

(1.2)

where

Q = DT A ∈ Rn×n, R = DT B ∈ Rn×n, a = DT d ∈ Rn.

If w = 0, the wSOCCP (1.2) reduces to the second-order cone complementarity problem, de-
noted by SOCCP(Q,R,a). If w = 0, Q = I, R =−M, and a = q, SOCCP(Q,R,a) reduces to the
second-order cone complementarity problem SOCCP(M,q). In particular, when K = Rn

+, this
reduces to the standard linear complementarity problem LCP(M,q).

The set of all feasible points and the set of all strictly feasible points for the wSOCCP (1.1)
are defined by

F = {z = (x,s,y) ∈K ×K ×Rm : Ax+Bs+Cy = d},

F 0 = {z = (x,s,y) ∈ intK × intK ×Rm : Ax+Bs+Cy = d},
respectively. In addition, the solution set of the wSOCCP (1.1) is given by

F ∗ = {z = (x,s,y) ∈F : x◦ s = w}.

The weighted complementarity problem (wCP) originates from the monograph by Kojima
et al. [3], while the weighted linear complementarity problem (wLCP) with P∗(κ) (sufficient)
matrices is studied in [4, 5]. In 2012, the notion of a wCP is introduced by Potra in [6], which
consists of finding a pair of vectors (x,s) belonging to the intersection of a manifold with a
cone such that their product in a certain algebra, x ◦ s, equals a given weight vector w. If w
is the zero vector, the wCP reduces to a complementarity problem (CP) [6] which has been
extensively studied. Compared to CP [7, 8], the wCP can be used to modeling a larger class of
equilibrium problems from engineering and economics. For example, the Fisher market equi-
librium problem with linear utilities reduces to a monotone linear wCP [9, 10] by using the
Eisenberg-Gale formulation of the Fisher problem [11]. Moreover, the linear programming and
weighted centering (LPWC) problem introduced by Anstreicher [12] also can be formulated as
a monotone linear wCP [9]. Potra [6] presented and analyzed two interior-point methods for
solving the monotone linear wCP over the nonnegative orthant. In 2016, Potra [9] gave some
fundamental results about sufficient linear wCP over the nonnegative orthant, and proposed a
corrector-predictor interior-point method for its numerical solution. Potra [9] associated with
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each sufficient linear wCP an appropriate optimization problem, and showed that a linear wCP
is row sufficient if and only if every KKT point of that optimization problem is a solution of the
wCP. Every column sufficient linear wCP is proved to have a convex (perhaps empty) solution
set [9]. Jian [13] presented a smoothing Newton method for solving monotone linear wCP over
the nonnegative orthant. Chi, Gowda and Tao [14] studied the weighted horizontal linear com-
plementarity problem in the setting of Euclidean Jordan algebras and established some existence
and uniqueness results. Asadi, Darvay, Lesaja et al. [15] presented a full-Newton step interior-
point method for monotone weighted linear complementarity problems. Tang and Zhang [16]
developed a nonmonotone smoothing Newton algorithm for wCP with good numerical perfor-
mance. Based on a kernel function, Chi, Wang and Lesaja [17] proposed a full-Newton step
feasible interior-point algorithm for P∗(κ)-weighted linear complementarity problem.

In this paper, we aim to study the properties of the wSOCCP (1.1). We show that the column
sufficient wSOCCP with cross commutative property has a convex (perhaps empty) solution
set. If the weight vector is zero, the reverse implication is also true. The analysis is based on
properties associated with SOC, which differ from the traditional techniques for the wCP [9].
To sum up, we compare the conditions in the results of the wCP [9] and our results of the
wSOCCP in Table 1.

The organization of this paper is as follows. In Section 2, we review some preliminar-
ies including the Euclidean Jordan algebra associated with SOC, and the Cartesian mixed
P0−property. In Section 3 and Section 4, we discuss some properties of wSOCCP, such as
the convexity of the solution set, globally uniquely solvable property, etc. Section 5 is devoted
to maximal complementarity for the wSOCCP.

TABLE 1. Properties of the wCP and the wSOCCP

property wCP [9] wSOCCP

convex solution set column sufficient
column sufficient,
cross commutative

nonempty convex set of
maximal complementarity

solutions
column sufficient, solvable

column sufficient,
cross commutative,

solvable, O = /0

a unique solution sufficient, strictly feasible
cross commutative,

solvable, P−property

The following notations are used throughout this paper. Let Rn (respectively, R) denote the
space of n-dimensional real column vectors (respectively, real numbers). The cone of sym-
metric, positive definite matrices of order n is denoted by Sn

++. For convenience, we often use
x = (x0,x) for the column vector x = (x0,xT )T ∈R×Rn−1, and use (x,y,z) for adjoining vectors
x,y,z in a column (xT ,yT ,zT )T . For any x ∈ Rn, x+ denotes the nearest-point (in the Euclidean
norm) projection of x onto the SOC K . For any x,y ∈ Rn, we write x �K y if x− y is in K .
For convenience, we define xu y := x− (x− y)+. The symbol ‖ · ‖ denotes the Euclidean norm
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defined by ‖x‖ :=
√

xT x for a vector x. If A ⊆ Rk and B ⊆ Rl , then

A ×B = {(x,y) : x ∈A and y ∈B}
is their Cartesian product.

2. PRELIMINARIES

In this section, we recall some concepts and backgrounds, which include the Euclidean Jordan
algebra associated with SOC [18–20], and the Cartesian mixed P0−property [21].

First, we recall some concepts and the Euclidean Jordan algebra associated with the SOC
[18, 19]. The SOC (also called Lorentz cone or ice-cream cone) is defined by

K n = {x = (x0,x) ∈ R×Rn−1 : ‖x‖ ≤ x0}, (2.1)

where x ∈ Rn−1, and ‖ · ‖ refers to the Euclidean norm. The Euclidean Jordan algebra for the
SOC K n is the algebra defined by

x◦ s = (xT s,x0s+ s0x), ∀x,s ∈ Rn,

with e = (1,0, · · · ,0)T ∈ Rn being its unit element. Given an element x = (x0,x) ∈ R×Rn−1,
we define

L(x) =
(

x0 xT

x x0In−1

)
,

where In−1 represents the (n−1)×(n−1) identity matrix. Moreover, L(x) is symmetric positive
definite (and hence invertible) if and only if x ∈ intK n. It is easy to verify that x◦ s = L(x)s for
any s ∈Rn. It should be noted that x and s do not operator commute in general, i.e., L(x)L(s) 6=
L(s)L(x).

We now introduce the spectral factorization of vectors in Rn associated with the SOC K n,
which is an important character of Jordan algebra. For any x = (x0,x) ∈ R×Rn−1, its spectral
factorization relative to the SOC K n is defined as

x = λ1(x)c(1)(x)+λ2(x)c(2)(x). (2.2)

Here λ1(x), λ2(x) are the spectral values given by

λi(x) = x0 +(−1)i‖x‖, i = 1,2, (2.3)

and c(1)(x), c(2)(x) are the associated spectral vectors given by

c(i)(x) =
1
2
(
1,(−1)ix̃

)
, i = 1,2, (2.4)

with x̃ = x
‖x‖ if x 6= 0, and any vector x̃ ∈ Rn−1 satisfying ‖x̃‖= 1 if x = 0. Observe that

c(1)(x)◦ c(2)(x) = 0, c(i)(x)◦ c(i)(x) = c(i)(x), c(i)(x) ∈ bdK n

for i = 1,2. By using the spectral factorization, we may extend scalar functions to the SOC
functions. For example, we define

x2 = λ
2
1 (x)c

(1)(x)+λ
2
2 (x)c

(2)(x), ∀x ∈ Rn.

Since both λ1 and λ2 are nonnegative for any x ∈K n, we define
√

x =
√

λ1(x)c(1)(x)+
√

λ2(x)c(2)(x), ∀x ∈K n.
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Now let us introduce the concept of the Cartesian mixed P0−property.

Definition 2.1. [21] Let the matrix D = (A,B,C) where A,B ∈ R(n+m)×n and C ∈ R(n+m)×m.
The matrix D is said to have the Cartesian mixed P0−property if and only if C has full column
rank and

A∆x+B∆s+C∆y = 0, (∆x,∆s) 6= 0, ∆y ∈ Rm

∆x = (∆x1, · · · ,∆xr) ∈ Rn1×·· ·×Rnr

∆s = (∆s1, · · · ,∆sr) ∈ Rn1×·· ·×Rnr

⇒
there exists an index i such that (∆xi,∆si) 6= 0 and 〈∆xi,∆si〉 ≥ 0.

Clearly, when r = n and n1 = · · ·= nr = 1, the matrix Q having the Cartesian mixed P0−property
coincides with Q having the mixed P0−property [22]. Therefore, (A,B,C) having the Cartesian
mixed P0−property, is a weaker assumption than the monotonicity assumption usually used in
SOCCPs (see, e.g., [23]).

3. WEIGHTED SECOND-ORDER CONE COMPLEMENTARITY PROBLEM

For subsequent needs, we introduce some definitions.

Definition 3.1. The triplet (A,B,C) is said to have the column sufficient property if

(∆x,∆s,∆y) ∈ Ker(A,B,C)
∆x and ∆s operate commute
∆x◦∆s ∈ −K

⇒ ∆x◦∆s = 0. (3.1)

Definition 3.2. [14] The triplet (A,B,C) is said to have the P−property over R2n+m if

(∆x,∆s,∆y) ∈ Ker(A,B,C)
∆x and ∆s operate commute
∆x◦∆s ∈ −K

⇒ ∆x = 0 and ∆s = 0.

Definition 3.3. The triplet (A,B,C) is said to have the cross commutative property, if for any
two distinct solutions (x,s,y) and (u,v,h) of the wSOCCP (1.1), x operator commutes with v
and u operator commutes with s, where Ax+Bs+Cy = d, Au+Bv+Ch = d for any given
vector d ∈ Rn+m, and x◦ s = w, u◦ v = w for any weight vector w ∈K .

Example 3.1. Consider the wSOCCP (1.2) associated with the SOC K 3, where

Q =

 1 0 0
0 1 0
0 0 1

 , R =

 0 0 0
0 0 0
0 0 1

 ,

a =

 2
1
1

 , w =

 4
2
2

 ∈ intK 3, u =

 0
0
−1

 , v =

 1
0
1

 .

The solution set of the wSOCCP (1.2) with (Q,R,a,w), described byx =

 2
1
1

 and s =

 2
0
0

 , x′ =

 2
1
0

 and s′ =

 2
0
1

 ,
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is not convex. Here x and s operator commute, and x′ and s′ do not operator commute. Since
x and s′ don’t operator commute, and x′ and s operator commute, the pair (Q,R) is not cross
commutative. Here (u,v)∈Ker(Q,R), u◦v∈−K 3 and u◦v=(−1,0,−1)T 6= 0, which implies
that the pair (Q,R) with full of row rank is not column sufficient. Moreover, for any (u′,v′) ∈
Ker(Q,R), we have u′=(0,0,−v′3)

T and thus u′T v′=−v′23 ≤ 0, which implies that the wSOCCP
(1.2) with (Q,R,a,w) is not monotone.

From Example 3.1, we summarize couple observations as below.
(a): Although some pair (Q,R) is full of row rank, it may be neither column sufficient

nor monotone, and perhaps the solution set of the corresponding wSOCCP (1.2) is not
convex.

(b): Even for the same pair (Q,R) in the wSOCCP (1.2), some solutions x and s operator
commute, and some solutions x′ and s′ do not operator commute. Since x and s′ don’t
operator commute, and x′ and s operator commute, the pair (Q,R) is not necessarily
cross commutative.

Definition 3.4. Let the matrix D = (A,B,C) where A,B ∈ R(n+m)×n and C ∈ R(n+m)×m. The
matrix D is said to be Cartesian monotone if

A∆x+B∆s+C∆y = 0, ∆y ∈ Rm

∆x = (∆x1, · · · ,∆xr) ∈ Rn1×·· ·×Rnr

∆s = (∆s1, · · · ,∆sr) ∈ Rn1×·· ·×Rnr

⇒
〈∆xi,∆si〉 ≥ 0 for any index i = 1, · · · ,r.

4. PROPERTIES OF THE WSOCCP

In this section, we discuss some properties of the proposed wSOCCPs (1.1) and (1.2).

Definition 4.1. [14] The pair {Q,R} is said to be an R0-pair if zero is the only solution of the
LCP(Q,R,0). This means that

Θ(z) = 0⇔ z = 0,

where

Θ(z) :=
[

xu y
Qx+Ry

]
with z = (x,y).

Here LCP(Q,R,a) in Definition 4.1 denotes wLCP (Q,R,a,w) with w = 0. Let SOL(a,w)
denote the solution set of wLCP(Q,R,a,w) on a Euclidean Jordan algebra.

Theorem 4.1. [14] Let {Q,R} be an R0-pair with deg(Q,R) nonzero.
(i): For any (a,w) ∈Rn×K , the wLCP(Q,R,a,w) has a nonempty compact solution set.
(ii): Let w > 0, tk ↓ 0, and (xk,sk) ∈ SOL(tk a,w) for all k. Then, xk > 0 and sk > 0 for

all k, the sequence {(xk,sk)} is bounded, and any accumulation point of this sequence
solves LCP(Q,R,a).

Theorem 4.1 (i) shows that wLCP(Q,R,a,w) is solvable in a general Euclidean Jordan alge-
bra with a symmetric cone, which is just wSOCCP(Q,R,a,w) (1.2) if the symmetric cone is the
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SOC K . Theorem 4.1 (ii) is very useful in designing interior-point algorithms for LCP on a Eu-
clidean Jordan algebra. Moreover, wLCP over symmetric cone together with Theorem 4.1 can
be applied to weighted centers for linear programming (LP), semidefinite programming (SDP)
and second-order cone programming (SOCP), which plays an important role in interior-point
algorithms (see [3]).

(i): One notation of weighted centers for LP [24] may be characterized by the following
wLCP on the nonnegative orthant [25]

Ax = b, s = c−AT y for some y ∈ Rm,
xs = w, x > 0, s > 0,

where xs denotes the componentwise product of x and s.
(ii): One of the available notions of weighted centers for SDP [26] is the weighted centers

defined as solutions of the wLCP over the cone of symmetric and positive semidefinite
matrices

A(X) = b, S =C−A∗y for some y ∈ Rm,
XS+SX = 2W, X ∈ Sn

++, S ∈ Sn
++,

where the symmetric matrix W is the weight.
(iii): Weighted centers for SOCP may be given by solutions of the following system of

equations

Ax = b, s = c−AT y for some y ∈ Rm,
x◦ s = w, x ∈K , s ∈K ,

which is a skew-symmetric wSOCCP.

Lemma 4.1. For wSOCCP (1.1) with A,B ∈R(n+m)×n and C ∈R(n+m)×m, consider the follow-
ing statements.

(i): The wSOCCP (1.1) is Cartesian monotone, and C has full column rank.
(ii): The wSOCCP (1.1) is monotone and C has full column rank.
(iii): (A,B,C) has the Cartesian mixed P0−property.

Then, there holds (i)⇒(ii)⇒(iii).

Proof. The implications follow from Definition 2.1, Definition 3.4 and the concept of mono-
tonicity. �

Lemma 4.2. For the wSOCCP (1.2) with (Q,R) ∈ Rn×(n+n), consider the following statement.

(i): The wSOCCP (1.2) is Cartesian monotone.
(ii): The pair (Q,R) is column sufficient.
(iii): (Q,R) is full of row rank.

Then, there holds (i)⇒(ii)⇒(iii).

Proof. (i)⇒(ii) Consider (∆x,∆s) ∈ Ker(Q,R) satisfying that ∆x and ∆s operate commute, and
∆x◦∆s ∈ −K . Then, we have

Q∆x+R∆s = 0,
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and consequently ∆xT
i ∆si ≥ 0 for any i = 1, · · · ,r, since the wSOCCP (1.2) is Cartesian mono-

tone. Moreover, due to

∆xi ◦∆si =

(
∆xT

i ∆si
∆xi0∆si +∆si0∆xi

)
∈ −K ni,

we obtain

∆xT
i ∆si ≤ 0 and ‖∆xi0∆si +∆si0∆xi‖ ≤ −∆xT

i ∆si.

Thus,

∆xT
i ∆si = 0 and ‖∆xi0∆si +∆si0∆xi‖= 0,

which implies ∆xi ◦∆si = 0 for any i = 1, · · · ,r, i.e., ∆x◦∆s = 0.

(ii)⇒(iii) By following the proof of Theorem 2.1 [27] for sufficient LCPs, we obtain the desired
result. For simplicity, we omit the details. �

Remark 4.1. Consider the following statements.

(i’): (Q,R) is not full of row rank.
(ii’): The pair (Q,R) is not column sufficient.
(iii’): The wSOCCP (1.2) is not Cartesian monotone.

It follows from Lemma 4.2 that (i’)⇒(ii’)⇒(iii’).

Lemma 4.3. For the wSOCCP (1.1), the following statements are equivalent.

(i): The solution set of the wSOCCP (1.1) is convex.
(ii): For any two solutions (x,s,y) and (u,v,h) of the wSOCCP (1.1),

x◦ v+u◦ s = 2w. (4.1)

Especially, if w = 0, we have

x◦ v = u◦ s = 0.

Proof. (i)⇒(ii) Suppose that the solution set of the wSOCCP (1.1) is convex. Then, for any ξ ∈
[0,1] and any two solutions (x,s,y) and (u,v,h) of the wSOCCP (1.1), ξ (x,s,y)+(1−ξ )(u,v,h)
is a solution of the wSOCCP (1.1). Consequently, we obtain

w = (ξ x+(1−ξ )u)◦ (ξ s+(1−ξ )v)
= ξ 2x◦ s+ξ (1−ξ )(x◦ v+u◦ s)+(1−ξ )2u◦ v
= ξ 2w+ξ (1−ξ )(x◦ v+u◦ s)+(1−ξ )2w,

and therefore x◦ v+u◦ s = 2w.

(ii)⇒(i) Suppose that for any two solutions (x,s,y) and (u,v,h) of wSOCCP (1.1), we have
x◦ v+u◦ s = 2w. Then, for any ξ ∈ R, we have

(ξ x+(1−ξ )u)◦ (ξ s+(1−ξ )v)
= ξ 2x◦ s+ξ (1−ξ )(x◦ v+u◦ s)+(1−ξ )2u◦ v
= ξ 2w+2ξ (1−ξ )w+(1−ξ )2w
= w,
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and

A(ξ x+(1−ξ )u)+B(ξ s+(1−ξ )v)+C(ξ y+(1−ξ )h)
= ξ (Ax+Bs+Cy)+(1−ξ )(Au+Bv+Ch)
= ξ d +(1−ξ )d
= d.

If ξ ∈ [0,1], it yields that ξ (x,s,y)+ (1−ξ )(u,v,h) is a solution of the wSOCCP (1.1), which
implies that the solution set of the wSOCCP (1.1) is convex. �

Theorem 4.2. For the wSOCCP (1.1), if the triplet (A,B,C) has the column sufficient and cross
commutative properties, then the following results hold.

(a): For any weight vector w ∈K and any given vector d ∈Rn+m, the solution set F ∗ of
the wSOCCP (1.1) is convex (possibly empty).

(b): For any (x,s,y) ∈F ∗, x and s operator commute.
(c): For any i= 1,2, . . . ,r such that wi ∈ intK ni , xi ∈ intK ni and si ∈ intK ni are uniquely

defined for any (x,s,y) ∈ F ∗; For any i = 1,2, . . . ,r such that wi ∈ bdK ni , we have
either xi ∈ intK ni , si ∈ bdK ni , or xi ∈ bdK ni , si ∈ intK ni , or xi ∈ bdK ni , si ∈ bdK ni .

Proof. For any given weight vector w ∈K and any given vector d ∈ Rn+m, we only consider
the case K = K n without loss of generality.

(a) If the wSOCCP (1.1) has less than two solutions, the argument is obvious. Suppose that
(x,s,y) and (u,v,h) are arbitrary two distinct solutions of the wSOCCP (1.1), i.e.,

Ax+Bs+Cy = d,
Au+Bv+Ch = d,

(4.2)

and

x◦ s = w, x ∈K n, s ∈K n,
u◦ v = w, u ∈K n, v ∈K n.

(4.3)

By the definition of Jordan product (4.3) associated with SOC, we have

x0s0 + xT s = u0v0 +uT v = w0,
x0s+ s0x = u0v+ v0u = w.

(4.4)

According to the cross commutative property, x operator commutes with v and u operator com-
mutes with s. Then, it follows from [18, Corollary 7] that x = 0 or v = 0 or x and v are propor-
tional, and u = 0 or s = 0 or u and s are proportional.

Next, we will show (x−u)◦ (s− v) ∈ −K n by considering the following cases.

(i) For x = 0, s = 0, u = 0, and v = 0, we obtain from (4.4) that

x0s0 = u0v0 = w0.

For w0 = 0, it is not difficult to see that

(x−u)◦ (s− v) ∈ −K n.



10 X. CHI, J.-S. CHEN

Therefore, we only consider the case w0 > 0. To this end, using (4.3) yields

(x−u)◦ (s− v)
= x◦ s+u◦ v−u◦ s− x◦ v
= 2w−u◦ s− x◦ v

= 2
(

w0
0

)
−
(

u0s0
0

)
−
(

x0v0
0

)
= 2

(
w0
0

)
−

( w0u0

x0
0

)
−

( w0x0

u0
0

)

=−w0

( x0

u0
+

u0

x0
−2

0

)

=−w0

 (√
x0

u0
−
√

u0

x0

)2

0

 ∈ −K n.

(ii) For u = 0 and v = 0, it follows from (4.4) that w = 0 and hence x and s are proportional.
Then, we know that

λ1(u) = λ2(u) = u0, λ1(v) = λ2(v) = v0,

c(1)(s) = c(2)(x), c(2)(s) = c(1)(x).

By the spectral factorization, we compute

w = x◦ s = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(s)c(2)(x)+λ2(s)c(1)(x)]
= λ1(x)λ2(s)c(1)(x)+λ2(x)λ1(s)c(2)(x),

w = u◦ v = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= u0v0c(1)(x)+u0v0c(2)(x)
= w0c(1)(x)+w0c(2)(x),

u◦ s = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(s)c(2)(x)+λ2(s)c(1)(x)]
= u0λ2(s)c(1)(x)+u0λ1(s)c(2)(x),

x◦ v = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= v0λ1(x)c(1)(x)+ v0λ2(x)c(2)(x).

Consequently, they lead to

λ1(x)λ2(s) = u0v0 = w0 > 0, λ2(x)λ1(s) = u0v0 = w0 > 0.

It indicates that λ1(x) ≥ u0 if and only if λ2(s) ≤ v0 and λ2(x) ≥ u0 if and only if λ1(s) ≤ v0.
This further shows

(λ1(x)−u0)(λ2(s)− v0)≤ 0, (λ2(x)−u0)(λ1(s)− v0)≤ 0.
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Therefore, we conclude that

(x−u)◦ (s− v) = x◦ s+u◦ v−u◦ s− x◦ v
= [λ1(x)λ2(s)+u0v0−u0λ2(s)− v0λ1(x)]c(1)(x)

+[λ2(x)λ1(s)+u0v0−u0λ1(s)− v0λ2(x)]c(2)(x)
= (λ1(x)−u0)(λ2(s)− v0)c(1)(x)

+(λ2(x)−u0)(λ1(s)− v0)c(2)(x)
∈ −K n.

(iii) For x = 0 and u = 0, it follows from (4.3) and (4.4) that

λ1(x) = λ2(x) = x0 > 0, λ1(u) = λ2(u) = u0 > 0,

(x0s0,x0s) = x◦ s = w = u◦ v = (u0v0,u0v).

For notational convenience, we denote

c(1)(x) = c(1)(s) = c(1)(v) = c(1)(u), c(2)(x) = c(2)(s) = c(2)(v) = c(2)(u).

By the spectral factorization, we have

w = x◦ s = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(s)c(1)(x)+λ2(s)c(2)(x)]
= x0λ1(s)c(1)(x)+ x0λ2(s)c(2)(x)
= λ1(w)c(1)(x)+λ2(w)c(2)(x),

w = u◦ v = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= u0λ1(v)c(1)(x)+u0λ2(v)c(2)(x),

u◦ s = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(s)c(1)(x)+λ2(s)c(2)(x)]
= u0λ1(s)c(1)(x)+u0λ2(s)c(2)(x),

x◦ v = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= x0λ1(v)c(1)(x)+ x0λ2(v)c(2)(x).

Then, we verify that

x0λ1(s) = u0λ1(v) = λ1(w)≥ 0, x0λ2(s) = u0λ2(v) = λ2(w)> 0.

Consequently, it indicates that x0 ≥ u0 if and only if λ1(s) ≤ λ1(v) and x0 ≥ u0 if and only if
λ2(s)≤ λ2(v). This further implies

(x0−u0)(λ1(s)−λ1(v))≤ 0, (x0−u0)(λ2(s)−λ2(v))≤ 0.

Therefore, we conclude that

(x−u)◦ (s− v) = x◦ s+u◦ v−u◦ s− x◦ v
= [x0λ1(s)+u0λ1(v)−u0λ1(s)− x0λ1(v)]c(1)(x)

+[x0λ2(s)+u0λ2(v)−u0λ2(s)− x0λ2(v)]c(2)(x)
= (x0−u0)(λ1(s)−λ1(v))c(1)(x)

+(x0−u0)(λ2(s)−λ2(v))c(2)(x)
∈ −K n.
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(iv) For u = 0, s 6= 0, and x and v are proportional, it follows from (4.3) that

λ1(u) = λ2(u) = u0 > 0,(
u0v0
u0v

)
= u◦ v = w =

(
w0
w

)
,

(
x0s0 + xT s
x0s+ s0x

)
= x◦ s = w =

(
w0
w

)
.

Then, x, v, s and w are all proportional. Without loss of generality, we assume

c(1)(x) = c(1)(v) = c(1)(u) = c(2)(s),
c(2)(x) = c(2)(v) = c(2)(u) = c(1)(s).

By the spectral factorization, we obtain

w = x◦ s = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(s)c(2)(x)+λ2(s)c(1)(x)]
= λ1(x)λ2(s)c(1)(x)+λ2(x)λ1(s)c(2)(x)
= λ1(w)c(1)(x)+λ2(w)c(2)(x),

w = u◦ v = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= u0λ1(v)c(1)(x)+u0λ2(v)c(2)(x),

u◦ s = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(s)c(2)(x)+λ2(s)c(1)(x)]
= u0λ2(s)c(1)(x)+u0λ1(s)c(2)(x),

x◦ v = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= λ1(x)λ1(v)c(1)(x)+λ2(x)λ2(v)c(2)(x).

Then, they yield

λ1(x)λ2(s) = u0λ1(v) = λ1(w)≥ 0, λ2(x)λ1(s) = u0λ2(v) = λ2(w)> 0,

which says that λ1(x) ≥ u0 if and only if λ2(s) ≤ λ1(v) and λ2(x) ≥ u0 if and only if λ1(s) ≤
λ2(v). This implies

(λ1(x)−u0)(λ2(s)−λ1(v))≤ 0, (λ2(x)−u0)(λ1(s)−λ2(v))≤ 0.

Therefore, we conclude that

(x−u)◦ (s− v) = x◦ s+u◦ v−u◦ s− x◦ v
= [λ1(x)λ2(s)+u0λ1(v)−u0λ2(s)−λ1(x)λ1(v)]c(1)(x)

+[λ2(x)λ1(s)+u0λ2(v)−u0λ1(s)−λ2(x)λ2(v)]c(2)(x)
= (λ1(x)−u0)(λ2(s)−λ1(v))c(1)(x)

+(λ2(x)−u0)(λ1(s)−λ2(v))c(2)(x)
∈ −K n.

(v) If x and v are proportional, u and s are proportional, and x and s are also proportional, we
obtain that x,v,u and s all share the same spectral vectors. Without loss of generality, we assume

c(1)(x) = c(2)(v) = c(2)(u) = c(1)(s),
c(2)(x) = c(1)(v) = c(1)(u) = c(2)(s).
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By the spectral factorization, we have

w = x◦ s = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(s)c(1)(x)+λ2(s)c(2)(x)]
= λ1(x)λ1(s)c(1)(x)+λ2(x)λ2(s)c(2)(x),

w = u◦ v = [λ1(u)c(2)(x)+λ2(u)c(1)(x)]◦ [λ1(v)c(2)(x)+λ2(v)c(1)(x)]
= λ2(u)λ2(v)c(1)(x)+λ1(u)λ1(v)c(2)(x),

u◦ s = [λ1(u)c(2)(x)+λ2(u)c(1)(x)]◦ [λ1(s)c(1)(x)+λ2(s)c(2)(x)]
= λ2(u)λ1(s)c(1)(x)+λ1(u)λ2(s)c(2)(x),

x◦ v = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(v)c(2)(x)+λ2(v)c(1)(x)]
= λ1(x)λ2(v)c(1)(x)+λ2(x)λ1(v)c(2)(x).

Then, they lead to

λ1(x)λ1(s) = λ2(u)λ2(v) = λ1(w)≥ 0,

λ2(x)λ2(s) = λ1(u)λ1(v) = λ2(w)> 0,

which indicate that λ1(x)≥ λ2(u) if and only if λ1(s)≤ λ2(v) and λ2(x)≥ λ1(u) if and only if
λ2(s)≤ λ1(v). This implies

(λ1(x)−λ2(u))(λ1(s)−λ2(v))≤ 0, (λ2(x)−λ1(u))(λ2(s)−λ1(v))≤ 0.

Therefore, we conclude that

(x−u)◦ (s− v)
= x◦ s+u◦ v−u◦ s− x◦ v
= [λ1(x)λ1(s)+λ2(u)λ2(v)−λ2(u)λ1(s)−λ1(x)λ2(v)]c(1)(x)

+[λ2(x)λ2(s)+λ1(u)λ1(v)−λ1(u)λ2(s)−λ2(x)λ1(v)]c(2)(x)
= (λ1(x)−λ2(u))(λ1(s)−λ2(v))c(1)(x)

+(λ2(x)−λ1(u))(λ2(s)−λ1(v))c(2)(x)
∈ −K n.

(vi) If x and v are proportional, and u and s are proportional, there exist real numbers α,β 6= 0
such that

u = αs, v = βx. (4.5)

By (4.4),

x0s+ s0x = u0βx+ v0αs.

If x and s are not proportional, then one has

x0 = v0α, s0 = u0β . (4.6)

From (4.3), (4.5) and (4.6), we obtain

u = (u0,u) = (
s0

β
,αs) ∈K n⇒ s0

β
≥ α‖s‖⇒ αβ ≤ s0

‖s‖
,

v = (v0,v) = (
x0

α
,βx) ∈K n⇒ x0

α
≥ β‖x‖⇒ αβ ≤ x0

‖x‖
.

(4.7)
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Combining (4.4) and (4.7) yields

x0s0 + xT s =
x0s0

αβ
+αβxT s

⇔ αβx0s0 +αβxT s = x0s0 +α2β 2xT s
⇔ (αβ −1)x0s0 +αβ (1−αβ )xT s = 0
⇔ (αβ −1)(x0s0−αβxT s) = 0
⇔ αβ = 1 or αβ =

x0s0

xT s
.

(4.8)

In the following, we will show αβ = 1 by contradiction. If αβ =
x0s0

xT s
, we obtain from (4.7)

αβ =
x0s0

xT s
≤ s0

‖s‖
⇒ x0 ≤

xT s
‖s‖
≤ ‖x‖ · ‖s‖

‖s‖
= ‖x‖,

αβ =
x0s0

xT s
≤ x0

‖x‖
⇒ s0 ≤

xT s
‖x‖
≤ ‖x‖ · ‖s‖

‖x‖
= ‖s‖.

However, it follows from (4.3) that x ∈K n, s ∈K n, i.e., x0 ≥ ‖x‖ and s0 ≥ ‖s‖. Thus,

x0 =
xT s
‖s‖

=
‖x‖ · ‖s‖
‖s‖

= ‖x‖,

s0 =
xT s
‖x‖

=
‖x‖ · ‖s‖
‖x‖

= ‖s‖,

which contradict the fact that x and s are not proportional. Then by (4.7) and (4.8), we have

αβ = 1,

and

u = α(s0,s) ∈K n, v =
1
α
(x0,x) ∈K n. (4.9)

Using (4.9), it further yields

(x−u)◦ (s− v)

=

(
x0−αs0
x−αs

)
◦

 s0−
1
α

x0

s− 1
α

x


=− 1

α
(x−αs)2 ∈ −K n.

(4.10)

Therefore, x−u and s− v operator commute, and

(x−u)◦ (s− v) ∈ −K n (4.11)

holds in all the cases. Applying (4.11), the column sufficient property and the fact (x− u,s−
v,y−h) ∈ Ker(A,B,C), we deduce that

(x−u)◦ (s− v) = 0, (4.12)

and

x◦ v+u◦ s = 2w.

By Lemma 4.3, the solution set F ∗ of the wSOCCP (1.1) is convex.
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(b) For any (x,s,y),(u,v,h) ∈F ∗, it follows from [18, Lemma 15], the proof of (a) and (4.12)
that x−u = 0, or s−v = 0, or x−u and s−v are proportional. Then, there exists a real number
δ ≤ 0 such that

x−u = δ (s− v).

By the cross commutative property, x operator commutes with v and u operator commutes with
s. Then it follows from [18, Corollary 7] that x = 0 or v = 0 or x and v are proportional, and
u = 0 or s = 0 or u and s are proportional. Without loss of generality, there exist real numbers
α,β (possibly zero) such that

v = αx, u = β s.

Therefore

x−β s = δ (s−αx),

i.e.,

(1+δα)x = (δ +β )s,

which, together with the proof of (a), implies that x and s are proportional (possibly zero) and
hence operator commute.

(c) Without loss of generality, we assume w ∈ intK n. From the proof of (b), x, s, u, v and w are
all proportional (possibly zero). Again, without loss of generality, we assume

c(1)(x) = c(1)(v) = c(1)(u) = c(1)(s),
c(2)(x) = c(2)(v) = c(2)(u) = c(2)(s).

Then, it follows from (4.12) that

0 = (x−u)◦ (s− v)
= (λ1(x)−λ1(u))(λ1(s)−λ1(v))c(1)(x)

+(λ2(x)−λ2(u))(λ2(s)−λ2(v))c(2)(x),

and hence

(λ1(x)−λ1(u))(λ1(s)−λ1(v)) = 0,
(λ2(x)−λ2(u))(λ2(s)−λ2(v)) = 0.

(4.13)

By the spectral factorization, we compute that

w = x◦ s = [λ1(x)c(1)(x)+λ2(x)c(2)(x)]◦ [λ1(s)c(1)(x)+λ2(s)c(2)(x)]
= λ1(x)λ1(s)c(1)(x)+λ2(x)λ2(s)c(2)(x),

w = u◦ v = [λ1(u)c(1)(x)+λ2(u)c(2)(x)]◦ [λ1(v)c(1)(x)+λ2(v)c(2)(x)]
= λ1(u)λ1(v)c(1)(x)+λ2(u)λ2(v)c(2)(x),

Since w ∈ intK n, we have

λ1(x)λ1(s) = λ1(u)λ1(v) = λ1(w)> 0,
λ2(x)λ2(s) = λ2(u)λ2(v) = λ2(w)> 0.
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Therefore, there hold λ1(x) 6= λ1(u) if and only if λ1(s) 6= λ1(v) and λ2(x) 6= λ2(u) if and only
if λ2(s) 6= λ2(v). Then by (4.13), we conclude that

λ1(x) = λ1(u)> 0, λ1(s) = λ1(v)> 0,
λ2(x) = λ2(u)> 0, λ2(s) = λ2(v)> 0,

i.e., x = u ∈ intK n and s = v ∈ intK n.

If w ∈ bdK n, by following the above proof, we can achieve

λ1(x)λ1(s) = λ1(w) = 0,
λ2(x)λ2(s) = λ2(w)≥ 0,

which imply that at least one of λ1(x) and λ1(s) is zero. Therefore, either x∈ intK n, s∈ bdK n,
or x ∈ bdK n, s ∈ intK n, or x ∈ bdK n, s ∈ bdK n. �

Example 4.1. We consider the wSOCCP (1.2) associated with K 3, where

Q =

 1 0 0
0 1 0
0 0 1

 , R =

 0 0 0
0 1 0
0 0 0

 , R′ =

 0 0 0
0 −1 0
0 0 0

 ,

a =

 1
0
1

 , w =

 4
0
4

 ∈ bdK 3, u =

 0
−1
0

 , v =

 1
1
0

 .

The solution set of the wSOCCP (1.2) with both (Q,R,a,w) and (Q,R′, a,w), given byx =

 1
0
1

 ,s =

 s1
0

4− s1

 with s1 ≥ 2

 ,

is convex, where x and s are both cross and operator commutative. Here (u,v) ∈ Ker(Q,R), u◦
v ∈−K 3, u◦v = (−1,−1,0)T 6= 0, which implies that the pair (Q,R) is not column sufficient.
Moreover, for any (u′,v′) ∈ Ker(Q,R′), we have u′ = (0,v′2,0)

T and u′T v′ = v′22 ≥ 0. Then,
the wSOCCP (1.2) with (Q,R′,a,w) is Cartesian monotone and from Lemma 4.2, it is column
sufficient.

In light of Example 4.1, we sum up the following observations.
(i): The existence of a weight vector w ∈K \{0} and a vector d ∈ Rn+m such that the

solution set of the wSOCCP (1.1) is convex does not imply that the triplet (A,B,C) is
column sufficient.

(ii): Even if the triplet (A,B,C) for the wSOCCP (1.1) has the column sufficient and cross
commutative properties, xi and si are not necessarily uniquely defined for some i =
1,2, . . . ,r such that wi /∈ intK ni and any (x,s,y) ∈F ∗.

(iii): Moreover, if the triplet (A,B,C) for the wSOCCP (1.1) is column sufficient and cross
commutative, we have either

xi ∈ intK ni, si ∈ bdK ni,

or
xi ∈ bdK ni, si ∈ intK ni,
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or
xi ∈ bdK ni, si ∈ bdK ni,

for any i = 1,2, . . . ,r such that wi ∈ bdK ni .

Theorem 4.3. For the wSOCCP (1.1) with w = 0, the following statements are equivalent.
(i): The triplet (A,B,C) has the column sufficient and cross commutative properties.
(ii): For any d ∈ Rn+m, the wSOCCP (1.1) with w = 0 has a convex (possibly empty)

solution set.

Proof. (i)⇒(ii) It follows immediately from Theorem 4.2.

(ii)⇒(i) On the contrary, we assume that the pair (Q,R) in the wSOCCP (1.2) is not column
sufficient. Then, there exist vectors u,v ∈ Rn such that

(u,v) ∈ Ker(Q,R)
u and v operate commute
u◦ v ∈ −K

⇒ u◦ v 6= 0.

Thus, it follows from Definition 5 in [18] that u and v have the same spectral vectors. Without
loss of generality, we assume

c(1)(u) = c(1)(v), c(2)(u) = c(2)(v),

and

λ1(u)λ1(v)≤ 0, λ2(u)λ2(v)≤ 0.

Consequently, by the spectral factorization, we have

u+ ◦ v+ = 0, u− ◦ v− = 0.

Note that u = u+−u−,v = v+− v−, let us define

a = Qu++Rv+ = Qu−+Rv−.

Clearly, there holds

〈u,v〉= 〈e,u◦ v〉< 0.

Therefore, (u+,v+) and (u−,v−) are two distinct solutions of the wSOCCP (1.2) with w = 0.
Since the solution set of the wSOCCP (1.2) with w = 0 is convex, applying Lemma 4.3 yields
that

u+ ◦ v− = u− ◦ v+ = 0,

which implies

u◦ v = (u+−u−)◦ (v+− v−) = 0.

This is a contradiction with 〈u,v〉< 0.

In addition, since the solution set of the wSOCCP (1.2) with w = 0 is convex, it follows from
Lemma 4.3 that

x◦ v = u◦ s = 0

for any two distinct solutions (x,s) and (u,v) of the wSOCCP (1.2) with w = 0. Thus, the cross
commutative property holds. �
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Remark 4.2. Theorem 4.2 shows if the triplet (A,B,C) has the column sufficient and cross
commutative properties, the solution set of the wSOCCP is convex. Under the same condition,
Qin, Kong and Han [28] study the convexity of solution set for the symmetric cone linear
complementarity problem (SCLCP), which is to find x ∈ V such that

x ∈ K, L (x)+q ∈ K, 〈x,L (x)+q〉= 0,

where (V ,◦,〈·, ·〉) is a Euclidean Jordan algebra, K is the corresponding symmetric cone, L :
V → V is a linear transformation and q ∈ V . When a symmetric cone reduces to a SOC, a
SCLCP becomes a SOCCP, which is the special case of wSOCCP with w = 0.

Theorem 4.4. Suppose the triplet (A,B,C) has the cross commutative, solvable and P−property.
Then, the wSOCCP (1.1) has the globally uniquely solvable property.

Proof. If the wSOCCP (1.1) has less than two solutions, the result obviously holds. Suppose
that (x,s,y) and (u,v,h) are arbitrary two solutions of the wSOCCP (1.1). Using the triplet
(A,B,C) having the cross commutative property and following the proof of Theorem 4.2(a)
yields that x−u and s− v operator commute, and (4.11) holds, i.e.,

(x−u)◦ (s− v) ∈ −K n.

Because the triplet (A,B,C) has the P−property, it follows from Definition 3.2 that

x−u = 0, s− v = 0,

which implies that the wSOCCP (1.1) has the globally uniquely solvable property. �

5. MAXIMAL COMPLEMENTARITY

To present the maximal complementarity results, let us define the following index sets

W = {i ∈ {1,2, . . . ,r} : wi = 0},
W = {i ∈ {1,2, . . . ,r} : wi ∈ bdK ni},
Ŵ = {i ∈ {1,2, . . . ,r} : wi ∈ intK ni}.

Then, by [18, Corollary 24], we consider the following subsets of W :

I = {i ∈ {1,2, . . . ,r} : ∃(x,s,y) ∈F ∗,xi ∈ intK ni,si = 0},
J = {i ∈ {1,2, . . . ,r} : ∃(x,s,y) ∈F ∗,xi = 0,si ∈ intK ni},
B = {i ∈ {1,2, . . . ,r} : ∃(x,s,y) ∈F ∗,xi ∈ bdK ni,si ∈ bdK ni},
O = {i ∈ {1,2, . . . ,r} : ∀(x,s,y) ∈F ∗,xi + si /∈ intK ni}.

Further, according to Theorem 4.2, we define the following subsets of W :

I = {i ∈ {1,2, . . . ,r} : ∃(x,s,y) ∈F ∗,xi ∈ intK ni,si ∈ bdK ni},
J = {i ∈ {1,2, . . . ,r} : ∃(x,s,y) ∈F ∗,xi ∈ bdK ni,si ∈ intK ni},
B = {i ∈ {1,2, . . . ,r} : ∀(x,s,y) ∈F ∗,xi ∈ bdK ni,si ∈ bdK ni}.

Theorem 5.1. Suppose that the wSOCCP (1.1) is column sufficient and cross commutative.
Then, the following results hold.

(a): The index sets I , J , B, O are disjoint and they form a partition of W .
(b): The index sets I , J , B are disjoint and they form a partition of W .
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(c): Moreover, for any solution (x,s,y) ∈ F ∗, there must have xJ = 0, sI = 0, xB ∈
bdK nB , sB ∈ bdK nB , and x

Ŵ
∈ intK n

Ŵ , s
Ŵ
∈ intK n

Ŵ .

Proof. First, the wSOCCP (1.1) is column sufficient and cross commutative, it follows from
Theorem 4.2 that the solution set of (1.1) is convex.

(a) It is obvious that I ∩O = J ∩O = B∩O = /0. To verify the desired result, we discuss
three steps.

(i) Firstly, we will show I ∩J = /0. For i∈I ∩J , there exist (x,s,y),(u,v,h) ∈F ∗ such that
xi ∈ intK ni , si = 0, ui = 0, vi ∈ intK ni . Therefore, for any ξ ∈ (0,1), we have ξ xi+(1−ξ )ui ∈
intK ni and ξ si +(1−ξ )vi ∈ intK ni , which contradicts the fact that the solution set of (1.1) is
convex.

(ii) Secondly, we will show I ∩B = /0. For i ∈ I ∩B, there exist (x,s,y),(u,v,h) ∈ F ∗

such that xi ∈ intK ni , si = 0, ui ∈ bdK ni , vi ∈ bdK ni . Thus, for any ξ ∈ (0,1), we have
ξ xi + (1− ξ )ui ∈ intK ni and ξ si + (1− ξ )vi ∈ bdK ni , which contradicts the fact that the
solution set of (1.1) is convex.

(iii) By following the same arguments of (ii), it can be verified that J ∩B = /0.

To conclude, the index sets I ,J ,B,O are disjoint and W = I ∪J ∪B∪O .

(b) From Theorem 4.2(c), we have W =I ∪J ∪B. Then, it is clear that I ∩B =J ∩B =
/0.

Now, we will show I ∩J = /0. For i ∈ I ∩J , there exist (x,s,y),(u,v,h) ∈F ∗ such that
xi ∈ intK ni , si ∈ bdK ni , ui ∈ bdK ni , vi ∈ intK ni . Then, for any ξ ∈ (0,1), we have ξ xi+(1−
ξ )ui ∈ intK ni and ξ si +(1−ξ )vi ∈ intK ni , which contradicts the fact that the solution set of
(1.1) is convex.

Thus, the index sets I , J , B are disjoint and W = I ∪J ∪B.

(c) Consider any solution (x,s,y) ∈F ∗ and an index i ∈ I . For si ∈ intK ni , we have xi = 0
and therefore i ∈J , which contradicts I ∩J = /0. For si ∈ bdK ni , we obtain xi ∈ bdK ni or
xi = 0; and consequently i∈B or i∈O , which contradicts I ∩B = /0 or I ∩O = /0. Therefore
sI = 0. Similarly, we can conclude that xJ = 0.

By the definition of B, we have for any i ∈B, xi ∈ bdK ni and si ∈ bdK ni , i.e., xB ∈ bdK nB ,
sB ∈ bdK nB . In view of the proof of Theorem 4.2(c), we obtain that for any i∈ Ŵ , xi ∈ intK ni

and si ∈ intK ni , i.e., x
Ŵ
∈ intK n

Ŵ , s
Ŵ
∈ intK n

Ŵ .
�

Definition 5.1. A solution (x∗,s∗,y∗) ∈F ∗ is said to be a maximal complementarity solution if

Cardinal{i : for any i = 1,2, . . . ,r such that x∗i + s∗i ∈ intK ni}
= max

(x,s,y)∈F ∗
Cardinal{i : for any i = 1,2, . . . ,r such that xi + si ∈ intK ni}.

Definition 5.2. A solution (x,s,y)∈F ∗ is said to be a strict complementarity solution if x+s∈
intK .
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For any (x,s,y) ∈F ∗, it follows from [18, Corollary 24], the proof of Theorem 4.2(c), Def-
inition 5.1, and Definition 5.2 that xi + si ∈ intK ni for any i ∈I ∪J ∪B∪I ∪J ∪ Ŵ . In
other words, a maximal complementarity solution is the strict complementarity solution if and
only if O ∪B = /0.

Theorem 5.2. Suppose that the wSOCCP (1.1) is column sufficient, cross commutative, and
solvable. Then, the following hold.

(a): If O = /0, the set of its maximal complementarity solutions is a nonempty convex set,
and any maximal complementarity solution must be in ri(F ∗) (i.e., the relative interior
of F ∗).

(b): Any solution in ri(F ∗) must be a maximal complementarity solution of the wSOCCP
(1.1).

Proof. (a) From Theorem 4.2, F ∗ is convex. For any i∈I , consider a solution (xi,si,yi)∈F ∗

with xi
i ∈ intK ni,si

i = 0; for any j ∈J , consider a solution (x j,s j,y j) ∈F ∗ with x j
j = 0,s j

j ∈
intK n j ; for any k ∈B, consider a solution (xk,sk,yk) ∈ F ∗ with xk

k ∈ bdK nk ,sk
k ∈ bdK nk ;

for any i′ ∈ I , consider a solution (xi′,si′ ,yi′) ∈F ∗ with xi′
i′ ∈ intK ni′ , si′

i′ ∈ bdK ni′ ; for any

j′ ∈J , consider a solution (x j′ ,s j′,y j′) ∈ F ∗ with x j′

j′ ∈ bdK n j′ , s j′

j′ ∈ intK n j′ . Then, we
observe that

(x,s,y) = (Cardinal(I ∪J ∪B∪I ∪J ))−1
(

∑
i∈I

(xi,si,yi)

+ ∑
j∈J

(x j,s j,y j)+ ∑
k∈B

(xk,sk,yk)+ ∑

i′∈I
(xi′,si′,yi′)

+ ∑

j′∈J
(x j′,s j′ ,y j′)

)
is a maximal complementarity solution of the wSOCCP (1.1). Since F ∗ is convex, its relative
interior is given by (see [29])

ri(F ∗) =
{

z ∈F ∗ : ∀z′ ∈F ∗,∃λ > 1 s.t. λ z+(1−λ )z′ ∈F ∗} . (5.1)

For any two solutions (x,s,y) and (u,v,h) of the wSOCCP (1.1), applying Lemma 4.3 yields
that for any ξ ∈ R

(A,B,C)(ξ (x,s,y)+(1−ξ )(u,v,h)) = d, (5.2)

(ξ x+(1−ξ )u)◦ (ξ s+(1−ξ )v) = w. (5.3)

Let (x,s,y) be a maximal complementarity solution and (u,v,h) be an arbitrary solution of
the wSOCCP (1.1). It follows from Theorem 4.2(c) that x and s operator commute, u and v
operator commute, and hence x,s,u,v and w all operator commute. Consequently, the following
implications hold.

(i) For any i ∈W ,

ui ∈ intK ni ⇒ xi ∈ intK ni, for i ∈I ,
vi ∈ intK ni ⇒ si ∈ intK ni, for i ∈J ,
ui ∈ bdK ni,vi ∈ bdK ni ⇒ xi ∈ bdK ni,si ∈ bdK ni, for i ∈B;
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(ii) For any i ∈W ,

ui ∈ intK ni ⇒ xi ∈ intK ni for i ∈I ,

vi ∈ intK ni ⇒ si ∈ intK ni for i ∈J ,

ui ∈ bdK ni,vi ∈ bdK ni ⇒ xi ∈K ni,si ∈K ni for i ∈I ∪J ∪B;

(iii) For any i ∈ Ŵ ,

ui ∈ intK ni,vi ∈ intK ni ⇒ xi ∈ intK ni,si ∈ intK ni.

Now, for any λ > 1 and any i = 1,2, · · · ,r, we obtain

λxi +(1−λ )ui �K xi +(1−λ )ui,
λ si +(1−λ )vi �K si +(1−λ )vi.

For convenience, we denote

λ = 1+ ς ,

ς = min


min
i, j,k

{
λ j(xi)
λk(ui)

: λ j(xi)> 0,λk(ui)> 0, j,k = 1,2
}
,

min
i, j,k

{
λ j(si)
λk(vi)

: λ j(si)> 0,λk(vi)> 0, j,k = 1,2
}
 .

If (x,s,y) is a maximal complementarity solution and O = /0, then

λ (x,s)+(1−λ )(u,v)�K 0.

Thus, it follows from (5.2) and (5.3) that

λ (x,s,y)+(1−λ )(u,v,h) ∈F ∗,

which together with (5.1) implies (x,s,y) ∈ ri(F ∗).

(b) Assume that (x,s,y) ∈ ri(F ∗) and any (u,v,h) ∈F ∗. In light of (5.1), there exists λ > 1
such that, for any i = 1,2, · · · ,r, we obtain

λxi +(1−λ )ui �K 0,
λ si +(1−λ )vi �K 0.

Since x,s,u,v and w all operator commute, the implications (i), (ii) and (iii) hold for any
(u,v,h) ∈F ∗. Hence, (x,s,y) is a maximal complementarity solution of the wSOCCP (1.1).

�

Remark 5.1. If the wSOCCP (1.1) is column sufficient, cross commutative, solvable, and
O = /0, then the set of its maximal complementarity solutions is a nonempty convex set that
coincides with the relative interior of F ∗. In contrast, in Proposition 2 [9], if the wLCP over
the nonnegative orthant is column sufficient and solvable, then the set of its maximal com-
plementarity solutions is a nonempty convex set that coincides with the relative interior of its
solution set. There are more required conditions in Theorem 5.2, it is due to the structure of
SOC. It is worthy of to relax some conditions in the future directions.
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