Advanced Linear Algebra (I) Exercise (Week 14) May 23, 2025

- 1. 閱讀講義 Sec. 5.3。回答 Question 5.13, 5.15.
- 2. 令 $V = \mathbb{R}^4$, $W = \mathbb{R}^3$ 。考慮 linear transformation $T: V \to W$,其中 T 使用標準基底所得的表現矩陣為 $\begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 2 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ 。本題中,請使用標準基底表現矩陣來表示 dual space 的元素。例如若 $f \in W^*$,定義為 f(x,y,z) = 2x 3y + z 則以矩陣 $\begin{bmatrix} 2 & -3 & 1 \end{bmatrix}$ 表示 f。又 V^* , W^* 的基底都用標準基底的 dual basis,即所謂 standard dual basis。
 - (a) 請利用矩陣寫下 W* 的 standard dual basis。
 - (b) 請說明若用矩陣表示 dual space 的元素,則 T^t 的定義域、對應域分別為幾階的矩陣。
 - (c) 試用矩陣表示 $T^{t}(f)$, 其中 f(x,y,z) = 2x 3y + z。
 - (d) 試依定義寫下 T^t 利用 standard dual basis 所得表現矩陣。
 - (e) 試利用 (d) 所得矩陣寫下 $ker(T^t)$ 和 $Im(T^t)$ 的 basis。
 - (f) 試寫下 $\ker(T)$ 和 $\operatorname{Im}(T)$ 的 basis,並依此寫下 $\ker(T^{\operatorname{t}})^{\circ}$ 和 $\operatorname{Im}(T^{\operatorname{t}})^{\circ}$ 的 basis。
- 3. 設 V, W 為 vector space 且 $\beta = (\mathbf{v}_1, \dots, \mathbf{v}_n), \gamma = (\mathbf{w}_1, \dots, \mathbf{w}_m)$ 分別為 V, W 的 ordered basis。考慮 dual space V^*, W^* 且分別令 $\beta^* = (\mathbf{v}_1^*, \dots, \mathbf{v}_n^*), \gamma^* = (\mathbf{w}_1^*, \dots, \mathbf{w}_m^*)$ 為以 β , γ 所得的 dual ordered basis。考慮 linear transformation $T: V \to W$ 以及其 transpose $T^t: W^* \to V^*$ 。
 - (a) 說明 T 為映成會和 T^{t} 為一對一或映成哪一個是等價的?反之,T 為一對一會和 T^{t} 為一對一或映成哪一個是等價的?
 - (b) 試比較表現矩陣 $\gamma[T]_{\beta}$ 以及 $\beta^*[T^t]_{\gamma^*}$ 的關係.
 - (c) 利用 $\dim(\operatorname{Im}(T))$, $\dim(\operatorname{Im}(T^t))$ 的關係, 說明對任意矩陣 A 和 A^t 有相同的 rank 。