2.3.3. 不定型的極限. 我們曾經探討過不定型的極限問題。利用微分可以將 $\frac{0}{0}$ 和 $\frac{\infty}{\infty}$ 這兩種不定型化成非不定型的形式,因而可依此得到極限。這種方法就是所謂的 L'Hospital's Rule。了解如何利用 L'Hospital's Rule 處理這兩種不定型後,其他的不定型極限問題,只要將之轉化成這兩種不定型的形式,就可以處理了。這一節中處理的極限皆適用於 $x \to \infty \cdot x \to -\infty \cdot x \to a \cdot x \to a^+$ 以及 $x \to a^-$,所以我們在敘述定理時極限依然簡單用 \lim 來表示,而不再區分是 x 趨近於哪一種情況。

假設 $\lim f(x) = \lim g(x) = 0$ 則 $\lim \frac{f(x)}{g(x)}$ 就是所謂的 $\frac{0}{0}$ 不定型極限。我們利用 $x \to a$ 的情況簡單說明 L'Hospital's Rule 的概念。當 f(x), g(x) 在 x = a 可微時,依可微則連續的性質知 f(x), g(x) 在 x = a 是連續的,亦即 $\lim_{x \to a} f(x) = f(a)$ 以及 $\lim_{x \to a} g(x) = g(a)$ 。此時 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ 表示 f(a) = g(a) = 0,所以

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)}.$$

,同理當處理 $\frac{\infty}{\infty}$ 不定型時,即 $\lim f(x) = \lim g(x) = \infty$ 時,由於 $\frac{f(x)}{g(x)} = \frac{1/g(x)}{1/f(x)}$ 以及 $\lim \frac{1}{g(x)} = \lim \frac{1}{f(x)} = 0$,我們依然可將之視為 $\frac{0}{0}$ 處理,而推得極限也和 $\frac{f'(x)}{g'(x)}$ 一致。這就是 L'Hospital's Rule 大致的概念。我們將之詳述如下。

Theorem 2.3.11 (L'Hospital's Rule). 假設 f(x), g(x) 在所求極限附近可微且滿足 $\lim f(x) = \lim g(x) = 0$ 或 $\lim |f(x)| = \lim |g(x)| = \infty$,則

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

注意,從前面的解釋中應可理解只有當 $\lim \frac{f(x)}{g(x)}$ 是 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 這兩種不定型時,才可以用 L'Hospital's Rule。當不是不定型時,已知極限為何,當然就不需用到 L'Hospital's Rule,甚至不能用(會得到錯誤的結果)。例如 $\lim_{x\to 1}\frac{x^2}{x-1}$ 為 $\frac{1}{0}$ 型,不是不定型且知極限不存在。但 $x^2,x-1$ 的微分分別為 2x,1。若誤用 L'Hospital's Rule,會得到其極限為 $\lim_{x\to 1}\frac{2x}{1}=2$ 這個錯誤結論。另外 L'Hospital's Rule 是將 f(x),g(x) 分別微分再相除求極限,而不是將整個 $\frac{f(x)}{g(x)}$ 微分。

Example 2.3.12. 課本 Example 4.3.1, 4.3.2, 4.3.3 考慮以下三個極限

(1)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$
, (2) $\lim_{x \to \infty} \frac{e^x}{x^2}$, (3) $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$.

首先確認它們分別為不定型 $\frac{0}{0}$, $\frac{\infty}{\infty}$ 以及 $\frac{\infty}{\infty}$, 所以可以套用 L'Hospital's Rule。

(1) 因 $\ln x, x - 1$ 的導函數分別為 $\frac{1}{x}, 1$, 故得 $\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{1/x}{1}$ 。此時已非不定型,故可求得極限為 1。

2.3. 微分的應用 49

(2) 因 e^x , x^2 的導函數分別為 e^x , 2x,故得 $\lim_{x\to\infty}\frac{e^x}{x^2}=\lim_{x\to\infty}\frac{e^x}{2x}$ 。此時仍為 $\frac{\infty}{\infty}$ 不定型,故再套用一次 L'Hospital's Rule,即再將 e^x , 2x 微分,分別得 e^x , 2(此時非不定型),可求得極限為

$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = \infty.$$

(3) 因 $\ln x$, \sqrt{x} 的導函數分別為 $\frac{1}{x}$, $\frac{1}{2\sqrt{x}}$, 故得

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}}.$$

注意因此時 $\frac{1}{x} \to 0$ 以及 $\frac{1}{2\sqrt{x}} \to 0$,故仍為不定型 $(\frac{0}{0})$,但不需再用 L'Hospital's Rule (否則 $\frac{1}{x}, \frac{1}{2\sqrt{x}}$ 的導函數會越來越複雜)。可先將之化簡再求得極限為

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0.$$

Ł

從 Example 2.3.12(2) 我們知道,有時要套用好幾次 L'Hospital's Rule 才能得到極限值,但又由(3) 我們知道 L'Hospital's Rule 並非永遠是最好用的,有時利用簡單的代數化簡搭配使用才能有效解決問題。

當 $x \to \infty$ 時 f(x), g(x) 都趨近於 ∞ ,我們會想知道哪一個函數增長的速度比較快。很自然的便會去考慮 f(x), g(x) 的比值 $\frac{f(x)}{g(x)}$ 。如果當 $x \to \infty$ 這個比值趨近的值大於 1 (包含 ∞),則知 f(x) 成長得比 g(x) 快;反之若比值趨近的值小於 1 便知 f(x) 成長得比 g(x) 慢。當然比值趨近於 1 表示他們成長速率一樣快。由於函數的微分定義就是考慮其成長速率,所以 L'Hospital's Rule 就是這樣的概念。例如在 Example 2.3.12 (2),(3) 我們知道 $\lim_{x \to \infty} \frac{e^x}{x^2} = \infty$ 以及 $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = 0$,所以當 x 越來越大時, e^x 的成長比 x^2 快,而 x 成長比 x 以來,事實上從次數來看,我們也知道 x^2 成長比 x 快。

接下來我們探討其他的不定型極限問題。首先看 $0 \cdot \infty$ 這種不定型,即 $\lim f(x) \cdot g(x)$,其中 $\lim f(x) = 0$ 且 $\lim |g(x)| = \infty$ 。由於此時 $\lim \frac{1}{g(x)} = 0$,所以若將 $f(x) \cdot g(x)$ 寫成 $\frac{f(x)}{1/g(x)}$,就可視為 $\frac{0}{0}$ 的不定型,用 L'Hospital's Rule 處理。同理,我們也可將 $f(x) \cdot g(x)$ 寫成 $\frac{g(x)}{1/f(x)}$,由於此時 $\lim \left|\frac{1}{f(x)}\right| = \infty$,也可將之視為 $\frac{\infty}{\infty}$ 的不定型,用 L'Hospital's Rule 處理。要注意,由於兩種看法分別牽涉到 $\frac{1}{g(x)}$ 和 $\frac{1}{f(x)}$ 的微分,所以要用哪一種看法處理取決於哪一個微分會讓問題簡化,我們看以下的例子。

2. 微分

Example 2.3.13. 課本 Example 4.3.8 探討 $\lim_{x\to 0^+} x \ln x$ 這個 $0\cdot\infty$ 不定型極限。首先觀察 $\frac{1}{x}$ 的導函數為 $\frac{-1}{x^2}$;而 $\frac{1}{\ln x}$ 的導函數為 $\frac{-1}{x(\ln x)^2}$ 。顯然 $\frac{1}{x}$ 較好處理,所以我們有

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0.$$

注意這裡我們用到 $\lim_{x\to 0^+} \frac{\ln x}{1/x}$ 是 $\frac{\infty}{\infty}$ 的不定型,所以可用 L'Hospital's Rule 處理。

另外課本 Exercise 4.3.24 探討 $\lim_{x\to -\infty} x^2 e^x$ 。注意當 $x\to -\infty$ 時, $x^2\to \infty$ 而 $e^x\to 0$,所以這是 $0\cdot \infty$ 的不定型極限。然而 $\frac{1}{x^2}=x^{-2}$ 的導函數 $-2x^{-3}$ 和 $\frac{1}{e^x}=e^{-x}$ 的導函數 $-e^{-x}$ 看起來都不複雜,到底要將哪一個放在分母呢?我們看一下兩種方法都套用 L'Hospital's Rule 結果如何:先將 x^2 置於分母(變成 $\frac{1}{x^2}$),套用 L'Hospital's Rule 得

$$\lim_{x \to -\infty} x^2 e^x = \lim_{x \to -\infty} \frac{e^x}{1/x^2} = \lim_{x \to -\infty} \frac{e^x}{-2x^{-3}} = \frac{1}{-2} \lim_{x \to -\infty} x^3 e^x;$$

而若將 e^x 置於分母 (變成 $\frac{1}{e^x}$), 套用 L'Hospital's Rule 得

$$\lim_{x \to -\infty} x^2 e^x = \lim_{x \to -\infty} \frac{x^2}{1/e^x} = \lim_{x \to -\infty} \frac{2x}{-e^{-x}} = -2 \lim_{x \to -\infty} x e^x.$$

兩者雖然仍為 $0\cdot\infty$ 的不定型,不過第一種方法讓原來 x^2e^x 變成 x^3e^x ,顯然未讓問題簡化;而第二種方法變成 xe^x ,如果再套用一次就可將 x 消去。所以我們繼續下去,將 $\lim_{x\to-\infty}\frac{2x}{-e^{-x}}$ 這個 $\frac{0}{0}$ 不定型,再套用 L'Hospital's Rule 得

$$\lim_{x \to -\infty} x^2 e^x = \lim_{x \to -\infty} \frac{2x}{-e^{-x}} = \lim_{x \to -\infty} \frac{2}{e^{-x}} = 0.$$

Н

前面我們也談到 $\infty - \infty$ 這種不定型極限。亦即 $\lim(f(x) - g(x))$ 其中 $\lim f(x) = \infty$ 且 $\lim g(x) = \infty$ 。這種情況如果剛好 f(x), g(x) 都可寫成分式,我們就可以將 f(x) - g(x) 通分化簡,寫成分式的樣子再判斷其極限。例如課本 Example 4.3.10 探討 $\lim_{x \to (\pi/2)^-} (\sec x - \tan x)$ 。我們可以將 $\sec x - \tan x$ 寫成 $\frac{1}{\cos x} - \frac{\sin x}{\cos x} = \frac{1 - \sin x}{\cos x}$ 。由於當 $x \to (\pi/2)^-$ 時 $(1 - \sin x) \to 0$ 且 $\cos x \to 0$,故利用 L'Hospital's Rule 得

$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x) = \lim_{x \to (\pi/2)^{-}} \frac{1 - \sin x}{\cos x} = \lim_{x \to (\pi/2)^{-}} \frac{-\cos x}{-\sin x} = 0.$$

若無法將 f(x) - g(x) 寫成分式,通常會將 f(x) 或 g(x) 提出,例如寫成 $f(x)(1 - \frac{g(x)}{f(x)})$ 看成乘法,再研判其極限。我們看以下課本的例子。

Example 2.3.14. 課本 Example 4.3.11 考慮 $\lim_{\substack{x \to \infty \\ x \to \infty}} (e^x - x)$ 這個 $\infty - \infty$ 的不定型極限。提出 e^x 可得 $e^x - x = e^x (1 - \frac{x}{e^x})$ 。當 $x \to \infty$ 時 $\frac{x}{e^x}$ 是 $\frac{\infty}{\infty}$ 不定型,故用 L'Hospital's Rule 知

2.3. 微分的應用 51

 $\frac{x}{e^x} \to 0$ 因此 $x \to \infty$ 時 $e^x(1-\frac{x}{e^x}) \to \infty$,亦即 $\lim_{x \to \infty} (e^x-x) = \infty$ 。注意,若是提出 x,即 $e^x-x=x(\frac{e^x}{x}-1)$,依然可得趨近於 $\infty \cdot \infty$ 。

課本 Exercise 4.3.31 探討 $\lim_{x\to\infty}(\sqrt{x^2+x}-x)$ 這個 $\infty-\infty$ 的不定型極限。提出 x 可得 $\sqrt{x^2+1}-x=x(\sqrt{1+\frac{1}{x}}-1)$ 。當 $x\to\infty$,這變成 $\infty\cdot 0$ 的不定型極限。故將 x 置於分母再 利用 L'Hospital's Rule 得

$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x) = \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x}} - 1}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{2} (1 + \frac{1}{x})^{-1/2} (\frac{1}{x})'}{(\frac{1}{x})'} = \frac{1}{2} \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x}}} = \frac{1}{2}.$$

其實這個極限也可利用根式運算處理(參考課本 Example 2.2.6 或上一章講義式子(1.11))。

由於指數函數的運用,還有 1^{∞} , ∞^0 以及 0^0 三種不定型的極限。也就是說 $\lim f(x)^{g(x)}$ 這種形式的極限,其中若 $\lim f(x) = 1$ 且 $\lim g(x) = \infty$,就是 1^{∞} 的不定型。例如 $\lim_{x \to \infty} (1 + \frac{1}{x})^x$,就屬 1^{∞} 不定型。而若 $\lim f(x) = \infty$ 且 $\lim g(x) = 0$,就是 ∞^0 的不定型。例如 $\lim_{x \to \infty} (1+x)^{1/x}$,就屬 ∞^0 不定型。最後若 $\lim f(x) = 0$ 且 $\lim g(x) = 0$,就是 0^0 的不定型。例如 $\lim_{x \to 0^+} x^x$,就屬 0^0 不定型。

為何它們是不定型呢?就拿 1^{∞} 來舉例,我們知道當 $x \to \infty$,若 0 < r < 1 則 $r^x \to 0$;而若 r > 1 則 $r^x \to \infty$ 。所以若 $f(x) \to 1$,則 f(x) 在趨近於 1 的過程是大於 1 或是小於 1 就會影響到 $f(x)^{g(x)}$ 的極限值。事實上,如果對 $f(x)^{g(x)}$ 取 \ln ,即 $\ln f(x)^{g(x)} = g(x) \cdot \ln f(x)$,我們會發現以上三種不定型的假設都會讓 $\lim(g(x) \cdot \ln f(x))$ 變成 $0 \cdot \infty$ 的不定型。而處理這類型的不定型極限的方法,就是利用前述處理 $0 \cdot \infty$ 的方法求出 $g(x) \cdot \ln f(x)$ 的極限,再還原成 $f(x)^{g(x)}$ 的極限。接下來我們用這個方法,處理前面所提的三個例子。

Example 2.3.15. 首先處理 $\lim_{x\to\infty} (1+\frac{1}{x})^x$ 。假設其極限為 L,利用 $\ln x$ 是連續函數,我們有 $\ln L = \lim_{x\to\infty} (x \cdot \ln \left(1+\frac{1}{x}\right))$ 。這是 $0\cdot \infty$ 的不定型,將 x 置於分母再利用 L'Hospital's Rule 可得

$$\lim_{x \to \infty} (x \cdot \ln\left(1 + \frac{1}{x}\right)) = \lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{(1 + \frac{1}{x})^{-1}(\frac{1}{x})'}{(\frac{1}{x})'} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1.$$

再由 ln L = 1, 得知極限值 $L = e^1 = e$ 。

同樣的處理 $\lim_{x\to\infty}(1+x)^{1/x}$ 。假設其極限為 L,我們有 $\ln L=\lim_{x\to\infty}(\frac{1}{x}\cdot\ln(1+x))$ 。這是 $0\cdot\infty$ 的不定型,利用 L'Hospital's Rule 可得

$$\lim_{x \to \infty} \left(\frac{1}{x} \cdot \ln(1+x) \right) = \lim_{x \to \infty} \frac{\ln(1+x)}{x} = \lim_{x \to \infty} \frac{(1+x)^{-1}(1+x)'}{(x)'} = \lim_{x \to \infty} \frac{1}{1+x} = 0.$$

再由 $\ln L = 0$,得知極限值 $L = e^0 = 1$ 。

最後處理 $\lim_{x\to 0^+} x^x$ 。假設其極限為 L,我們有 $\ln L = \lim_{x\to 0^+} (x\cdot \ln x)$ 。這是 $0\cdot \infty$ 的不定型,在 Example 2.3.13 (或課本 Example 4.3.8)已知其極限為 0。故由 $\ln L = 0$,得知極限值 $L = e^0 = 1$ 。

其實若遇到指數型的極限問題,也不需去記哪些是不定型。直接取對數 \ln 再求極限。若是非不定型就可知其極限為何,而若是不定型(即 $0\cdot\infty$)就用 L'Hospital's Rule 處理。不過最後求得極限後別忘了要取指數還原。

Excecise 2.22. 請檢查以下極限是否適用 l'Hospital's rule,並求其極限:課本 Exercise $4.3~(8,\,9,\,12,\,13,\,16)$ 。

Excecise 2.23. 利用多次套用 l'Hospital's rule 求其極限: 課本 Exercise 4.3 (16, 17, 20)。

Excecise 2.24. 有時運用 l'Hospital's rule 不要整個分母或分子微分,分開來處理極限會比較容易。例如 $\lim_{x\to 0} \frac{\sin x \tan x}{x}$ 雖為 $\frac{0}{0}$ 不定型,但將 $\frac{\sin x \tan x}{x}$ 拆成 $\frac{\sin x}{x} \tan x$ 仍可用運用 l'Hospital's rule 處理。請求極限 $\lim_{x\to 0} \frac{\sin x \tan x}{x}$ 以及課本 Exercise 4.3.22。

Excecise 2.25. 請做課本有關 $0 \cdot \infty$ 以及 $\infty - \infty$ 的極限: Exercise 4.3 (25, 26, 28, 32, 33)。

Excecise 2.26. 請做以下指數型的極限 $\lim_{x\to 0} (1+2x)^{1/x}$, $\lim_{x\to 0^+} (1+\frac{2}{x})^x$ °