Exercise (Week 12)

November 24, 2022

- 1. Define a relation \prec on \mathbb{Z} by the rule: $a \prec b$ if and only if either $(ab < 0) \land (a < b)$ or $(ab \ge 0) \land (|a| < |b|)$.
 - (a) Prove that (\mathbb{Z}, \prec) is a strict total ordered set.
 - (b) Let $-\mathbb{N}$ be the set of negative integers. Show that 1 is the least upper bound of $-\mathbb{N}$.
 - (c) Prove that (\mathbb{Z}, \prec) is a well ordered set (*i.e.* for any nonempty $S \subseteq \mathbb{Z}$, the least element of S exists).
- 2. Let $f \subseteq \mathbb{R} \times \mathbb{R}$ be a relation from \mathbb{R} to \mathbb{R} defined by

$$f = \{(a,b) : b - a = \begin{cases} 1, & \text{if } a \ge 0; \\ -1, & \text{if } a \le 0. \end{cases} \}$$

Is f a function from \mathbb{R} to \mathbb{R} ? Show your reason.

- 3. Suppose that $f: X \to X$ is a function and consider f as a relation on X. Prove that if f is symmetric then $f \circ f = \mathrm{id}_X$.
- 4. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Suppose $\forall x, x' \in X$, $y, y' \in Y$ and $z, z' \in Z$ we have $x \star x' \in X$, $y \diamond y' \in Y$ and $z \star z' \in Z$. Moreover, suppose we have

$$f(x \star x') = f(x) \diamond f(x')$$
 and $g(y \diamond y') = g(y) * g(y')$.

Prove if $(g \circ f)(x) = z$ and $(g \circ f)(x') = z'$, then $(g \circ f)(x \star x') = z \star z'$.