簡單來說給定一個 X 上的 partition, 就是將 X 上的元素分類. 前面已知道, 給定一個 X 上的 equivalence relation, 考慮此 equivalence relation 所成的 equivalence classes (也就是說將同類的收集起來) 就會是 X 的一個 partition. 現在我們考慮反過來, 若給定 X 上的 partition $X = \bigcup_{i \in I} C_i$, 對於任意 $x, y \in X$, 我們定義 $x \sim y$ 若且唯若 $x, y \in C_i$, for some $i \in I$ (亦即同類的元素視為相關), 則在此定義之下, 我們可得 \sim 是一個 equivalence relation. 這是因為依定義 $X = \bigcup_{i \in I} C_i$, 因此對於任意 $x \in X$, 皆存在 $i \in I$, 使得 $x \in C_i$, 因此得 $x \sim x$ (證得reflexive). 另外若 $x \sim y$, 表示 $x, y \in C_i$, for some $i \in I$, 當然也有 $y, x \in C_i$, 故得 $y \sim x$ (證得symmetric). 最後若 $x \sim y$, $y \sim z$, 知存在 $i, j \in I$ 使得 $x, y \in C_i$, $y, z \in C_j$. 由於 $y \in C_i \cap C_j$, 利用若 $i \neq j$ 則 $C_i \cap C_j = \emptyset$ 得知 i = j. 亦即 $x, z \in C_i$, 因此得 $x \sim z$ (證得 transitive). 我們得到以下的定理.

Theorem 4.2.3. 假設 X 為 set.

- (1) 若 \sim 為 X 上的一個 equivalence relation, 則 $\{[x]: [x] \in X / \sim \}$ 是 X 的一個 partition.
- (2) 若 I 為 index set 且 $\{C_i : i \in I\}$ 為 X 的一個 partition, 對於任意 $x,y \in X$, 定義 $x \sim y$ 若且唯若 $x,y \in C_i$, for some $i \in I$, 則 \sim 為 X 上的一個 equivalence relation.

Example 4.2.4. 若我們將整數 \mathbb{Z} 分為 2 的倍數所成的集合 $C_1 = \{2n : n \in \mathbb{Z}\}$, 3 的倍數所成的集合 $C_2 = \{3n : n \in \mathbb{Z}\}$ 以及 5 的倍數所成的集合 $C_3 = \{5n : n \in \mathbb{Z}\}$, 則 $\{C_1, C_2, C_3\}$ 不是一個 \mathbb{Z} 的 partition. 因為 7 就不是 2, 3 或是 5 的倍數 (亦即 7 $\not\in$ $C_1 \cup C_2 \cup C_3$), 故知 $\mathbb{Z} \neq C_1 \cup C_2 \cup C_3$. 另外 $C_1 \cap C_2 \neq \emptyset$, 例如我們有 $6 \in C_1 \cap C_2$. 同理 $C_1 \cap C_3 \neq \emptyset$, $C_2 \cap C_3 \neq \emptyset$.

若考慮 \mathbb{Z} 的 3 個 subset $C_1 = \{n: n = 3m, m \in \mathbb{Z}\}, C_2 = \{n: n = 3m+1, m \in \mathbb{Z}\}$ 以及 $C_3 = \{n: n = 3m+2, m \in \mathbb{Z}\}, \, \mathbb{N}$ $\{C_1, C_2, C_3\}$ 是一個 \mathbb{Z} 的 partition. 事實上,我們可以 將 C_1, C_2, C_3 分別看成除以 3 餘數分別為 0, 1 以及 2 的元素所成的集合. 很容易看出 $\mathbb{Z} = C_1 \cup C_2 \cup C_3$,而且 $C_1 \cap C_2 = C_1 \cap C_3 = C_2 \cap C_3 = \emptyset$. 利用這個 partition,我們可以定出 \mathbb{Z} 中的一個 equivalence relation 為 $x \sim y$ 若且唯若 $x, y \in C_i$, for some $i \in \{1, 2, 3\}$. 若 $x, y \in C_1$ 表示 x = 3m, y = 3m' for some $m, m' \in \mathbb{Z}$ 所以 x - y = 3(m - m'),亦即 $3 \mid x - y$ (表示 3 可以整除 x - y). 同理當 $x, y \in C_2$ 或 $x, y \in C_3$,皆有 $3 \mid x - y$. 所以我們知此 equivalence relation 可定義為 $x \sim y$ 若且唯若 $3 \mid x - y$. 很容易檢查 \sim 是 equivalence relation. 首先對所有 $x \in \mathbb{Z}$,我們有 $3 \mid x - x$,所以 $x \sim x$. 另外若 $x \sim y$,表示 $3 \mid x - y$,故有 $3 \mid -(x - y)$. 因此得 $3 \mid y - x$,即 $y \sim x$. 最後若 $x \sim y$ 且 $y \sim x$,表示 $3 \mid x - y$ 且 $3 \mid y - z$. 因此得 $3 \mid (x - y) + (y - z)$,即 $3 \mid x - z$. 得證 $x \sim z$. 在這裡我們有 $C_1 = [0] = [4]$, $C_2 = [1] = [-3]$ 以及 $C_3 = [2] = [11]$ … 等. 我們有 $\mathbb{Z}/\sim=\{[0],[1],[2]\}$.

Question 4.4. 對於任意正整數 m, 令 $I = \{0, 1, ..., m-1\}$ 為 index set. 考慮 Z 的 partition, $C_i = \{mk+i: k \in \mathbb{Z}\}, i \in I$. 試問此 partition 所對應的 equivalence relation 為何?

利用 equivalence relation 將集合分類成 partition 後再利用此分類來探討此集合,這樣的方法將來大家學習一些數學的理論時會用到. 目前我們僅介紹一個簡單的應用. 就是它可以幫我們計算一個有限集合的個數. 我們有以下的定理.

Proposition 4.2.5. 假設 X 是一個 finite set, 且用一個 equivalence relation 將其分成 equivalence classes C_1, \ldots, C_n . 若 #(X) 及 # (C_i) 表示這些集合的元素的個數, 則

$$\#(X) = \sum_{i=1}^{n} \#(C_i).$$

Proof. 由前面說明已知當 $i \neq j$ 時, $C_i \cap C_j = \emptyset$. 也就是說這些 C_i 是兩兩不相交的. 再加上每個 X 中的元素都會落在某個 C_i 中, 所以 X 的元素的個數剛好是這些 C_1, \ldots, C_n 的元素個數之和.

Example 4.2.6. 令 $A = \{1,2,3\}$ 且令 $X = \mathcal{P}(A)$. 考慮 X 上的 relation, 其定義為對任意 $B,C \in X$, $B \sim C$ 若且唯若 #(B) = #(C). 很容易看出 \sim 為 X 上的 equivalence relation. 這 是因為, 對任意 $B \in X$, 我們有 #(B) = #(B), 故知 $B \sim B$. 又若 $B \sim C$, 表示 #(B) = #(C), 故由 #(C) = #(B), 得 #(C) = #(C) 以及 #(C) = #(D) 得 #(B) = #(D). 故得 #(B) = #(D).

利用這個 equivalence relation 所得的 equivalence classes 形成 $X = \mathcal{P}(A)$ 的一個 partition. 我們有以下的 partition:

沒有元素: {0}

一個元素: $\{\{1\},\{2\},\{3\}\}$.

二個元素: $\{\{1,2\},\{1,3\},\{2,3\}\}$.

三個元素: $\{\{1,2,3\}\}$.

注意這幾個 equivalence classes 的元素個數分別為 $\binom{3}{0}$, $\binom{3}{1}$, $\binom{3}{2}$, $\binom{3}{2}$, $\binom{3}{3}$. 所以由 Proposition 4.2.5 知

$$\binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} = \#(X) = \#(\mathscr{P}(A)) = 2^3 = 8.$$

Question 4.5. 令 n 為正整數, $A = \{1,2,\ldots,n\}$ 且令 $X = \mathcal{P}(A)$. 考慮 X 上的 relation, 其定義為對任意 $B,C \in X$, $B \sim C$ 若且唯若 #(B) = #(C). 若 $m \in \mathbb{N}$ 且 0 < m < n, 試問 $\{1,2,\ldots,m\}$ 所在的 $equivalence \ class$ 其元素個數為何? 試證明

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n.$$

4.3. Order Relation

在數學上另一種常見的 relation 就是所謂 order relation, 亦即排序的關係. 它是一種符合 三種性質的 relation, 這類的 relation 和我們習慣的比較大小關係有一致的性質, 因此稱為 order relation.

以下介紹的 relation 由於和比較大小有類似的性質, 大家可以將之視為"小於等於"這樣的關係. 為了讓大家習慣它的性質, 我們不用 \sim 這個符號, 不過不希望誤以為它就是一般的"小於等於", 所以我們選用" \preceq "這個符號.

Definition 4.3.1. 假設 X 為 nonempty set 且 \preceq 為 X 上的 relation. Ξ \preceq 符合以下三種性質, 我們便稱 \preceq 為 X 上的 partial order.

- (1) 對所有 $x \in X$, 皆有 $x \leq x$.
- (2) 若 $x,y \in X$ 満足 $x \leq y$ 且 $y \leq x$, 則 x = y.
- (3) 若 $x,y,z \in X$ 満足 $x \preceq y$ 且 $y \preceq z$, 則 $x \preceq z$.

在 Definition 4.3.1 的性質 (1) 我們知道就是 reflexive 性質,而性質 (3) 就是 transitive 性質. 不過性質 (2) 和 symmetric 性質就差很多了. 它指的是若 $x \neq y$, 則不可能同時會有 $x \leq y$ 且 $y \leq x$. 若我們仍用 $S \subseteq X \times X$ 來表示這個 relation, 由於這個性質說的是當 $x \neq y$ 時, (x,y) 和 (y,x) 不可能同時在 S 中,故我們稱這個性質為 anti-symmetric. 當 \leq 為 X 上的一個 partial order,一般我們就簡稱 (X, \leq) 為一個 poset.

Example 4.3.2. 假設 A 為 nonempty set, 令 $X = \mathcal{P}(A)$. 考慮 X 上一般集合包含於的 relation \subseteq , 則 (X, \subseteq) 就是一個 poset.

Question 4.6. 假設 A 為 nonempty set, 令 $X = \mathcal{P}(A)$. 考慮 X 上一般集合的 relation \supseteq , 則 (X, \supseteq) 是否是一個 poset?

Question 4.7. 考慮實數 \mathbb{R} 一般的小於等於關係 \leq , 是否 (\mathbb{R}, \leq) 為 *poset?* 又 (\mathbb{R}, \geq) 是否 為 *poset?*

在一個 poset (X, \preceq) 中,若 $x,y \in X$ 滿足 $x \preceq y$ 或 $y \preceq x$,則稱 x,y 這兩個元素為 comparable (意指可以比較). Definition 4.3.1 之所以會稱為 "partial" order,就是因為它並沒有要求任 兩個 X 中的元素都是 comparable. 例如考慮 $A = \{1,2\}$ 的情形,我們知 \subseteq 是 $\mathcal{P}(A)$ 上的 partial order. 然而 $\{1\},\{2\} \in \mathcal{P}(A)$ 並不是 comparable, 因為 $\{1\} \subseteq \{2\}$ 和 $\{2\} \subseteq \{1\}$ 皆不成立. 不過實數 (\mathbb{R},\leq) 這個 poset 就有任兩個元素皆為 comparable 的性質. 因此我們又特別考慮以下的 order relation.

Definition 4.3.3. 假設 X 為 nonempty set 且 \preceq 為 X 上的 relation. Ξ \preceq 符合以下三種性質, 我們便稱 \preceq 為 X 上的 total order.

- (1) 若 $x,y \in X$ 満足 $x \leq y$ 且 $y \leq x$, 則 x = y.
- (2) 若 $x, y, z \in X$ 満足 $x \prec y$ 且 $y \prec z$, 則 $x \prec z$.
- (3) 對所有 $x,y \in X$, 皆有 $x \leq y$ 或 $y \leq x$.

Definition 4.3.3 的性質 (3) 便是要求任兩個元素皆要 comparable, 這個性質就是 total 的性質. 要注意由 (3) 的性質, 便可得到 reflexive, 因為這裡 x,y 沒有要求要相異, 所以依定義, 我們會有 $x \leq x$. 也因此我們知一個 total order 一定是 partial order (反過來就不一定對). 當 \leq 為 X 上的 total order, 一般我們就稱 (X, \leq) 為一個 total ordered set. 另外有的書會稱 total order 為 linear order 或是 simple order.

Question 4.8. 考慮實數 \mathbb{R} 一般的小於關係 <, 是否 (\mathbb{R} , <) 為 total ordered set?

或許大家會好奇前面談的 order \preceq 都有一個"等號", 也就是說 $x \preceq x$ 成立的原因是 x = x. 那麼是否可以像實數的 \leq 去掉等號得到 < 這樣的 order 呢?事實上, 如果 (X, \preceq) 是一個 total ordered set, 我們可以定義 $x \prec y$ 若且唯若 $x \preceq y$ 且 $x \neq y$. 在這情況之下, 我們便稱 \prec 為 X 的一個 $strict\ total\ order$. 我們有以下的定義.

Definition 4.3.4. 假設 X 為 nonempty set 且 \prec 為 X 上的 relation. 若 \prec 符合以下二種性質, 我們便稱 \prec 為 X 上的 $strict\ total\ order$.

- (1) 若 $x,y,z \in X$ 満足 $x \prec y$ 且 $y \prec z$, 則 $x \prec z$.
- (2) 對所有 $x,y \in X$, 皆會滿足 $x = y, x \prec y$ 或 $y \prec x$ 其中之一, 且其中僅有一個會成立.

在 Definition 4.3.4 中, 性質 (2) 稱為 trichotomy (三一律).

Example 4.3.5. 我們可以對所有複數所成的集合 $\mathbb C$ 定義一個 strict order. 對任意 $a+bi,c+di\in\mathbb C$, 其中 $a,b,c,d\in\mathbb R$ 且 $i^2=-1$. 我們定義 $(a+bi)\prec(c+di)$ 若且唯若 (1) a<c 或 (2) a=c 且 b<d. 此時 $(\mathbb C,\prec)$ 便是 strict total ordered set. 首先檢查 transitive 性質. 假設 $a+bi,c+di,e+fi\in\mathbb C$ 其中 $a,b,c,d,e,f\in\mathbb R$ 满足 $(a+bi)\prec(c+di)$ 且 $(c+di)\prec(e+fi)$. 依 \prec 的定義,我們知此時 $a\leq c$ 且 $c\leq e$,因此得 $a\leq e$. 我們可以 分成兩種情況討論: (-) 若 a< e,則由 \prec 的定義得 $(a+bi)\prec(e+fi)$; (-) 若 a=e,則 可得 a=c=e. 此時由 $(a+bi)\prec(c+di)$ 知 b<d,再由 $(c+di)\prec(e+fi)$ 知 d<f. 故得 b<f,因此依 \prec 的定義得 $(a+bi)\prec(e+fi)$. 證明了 \prec 符合 transitive 性質. 至於三一律, 若 $a+bi\neq c+di$,依複數相等的定義知 $a\neq c$ 或 $b\neq c$. 若 $a\neq c$,依實數的三一律知 a< c 或 c< a,也就是說此時 $(a+bi)\prec(c+di)$ 或 $(c+di)\prec(a+bi)$. 而若 a=c,此時必有 $b\neq d$,故 依然由實數的三一律可得 $(a+bi)\prec(c+di)$ 或 $(c+di)\prec(a+bi)$. 我們證明了任兩複數在 \prec 之下皆為 comparable,證得了 \prec 有 trichotomy 的性質.

在此定義之下 (\mathbb{C}, \prec) 為 strict total ordered set 且它保持了原本實數上 < 這個 order. 不過為甚麼常聽說複數不能比大小呢? 其實這是簡略的說法. 事實上, 實數和複數它們不只是 sets, 它們的元素之間還有加法及乘法運算. 所以我們在談其上的 order 時其實還多要求了兩個性質. 即在實數的情形我們多了和加法與乘法有關的兩個性質:

A: 若 a < b, 則對任意 c 皆有 a + c < b + c.

M: a < b, 則對任意 0 < c 皆有 ac < bc.

很容易驗證剛才定義複數上的 \prec 符合性質 A. 但是它不符合性質 M. 這是因為依定義我們有 $0 \prec i$, 但若性質 M 成立, 則有 $0 \times i \prec i \times i$, 即 $0 \prec -1$. 此與 \prec 之定義不符, 故知 \prec 不符合性質 M.

事實上,我們可以證明在 \mathbb{C} 上面不可能定義出一個 strict total order \prec 會保持原本實數的大小關係且符合性質 A 和 M. 這是因為若 (\mathbb{C}, \prec) 符合這些要求,則依三一律,我們有 $0 \prec i$ 或 $i \prec 0$ 兩種情況會發生. 若 $0 \prec i$,則由性質 M 會推得 $0 \prec -1$,不符合原本實數的大小關係. 而若 $i \prec 0$,則由性質 A 可推得 $i + (-i) \prec 0 + (-i)$,即 $0 \prec -i$. 此時再由性質 M,可

推得 $0 \times (-i) \vee (-i) \times (-i)$, 即 $0 \vee -1$, 同樣的不符合原本實數的大小關係. 因為在 \mathbb{C} 上是不可能存在 strict total order 符合這些性質, 所以我們才簡略的說複數是不能比大小的.

要注意 strict total order 並不是 total order. 但如前面所述, 每一個 total ordered set (X, \preceq) , 都可定義一個 strict total order.

Proposition 4.3.6. 假設 (X, \preceq) 是一個 total ordered set. 若定義 $x \prec y$ 若且唯若 $x \preceq y$ 且 $x \neq y$, 則在此定義之下, \prec 為 X 的一個 strict total order.

Proof. 首先我們證明 transitive 性質, 即若 $x,y,z \in X$ 满足 $x \prec y$ 且 $y \prec z$, 則要證明 $x \prec z$. 由 於 $x \prec y$ 表示 $x \preceq y$ 且 $x \neq y$, 而 $y \prec z$ 表示 $y \preceq z$ 且 $y \neq z$. 故由 \preceq 為 total order 有 transitive 性質, 得 $x \preceq z$. 我們必須證明 $x \neq z$. 利用反證法, 假設 x = z, 由 $x \preceq y$ 得 $z \preceq y$. 但又已知 $y \preceq z$, 故由 \preceq 為 total order 有 anti-symmetric 性質, 得 y = z. 此與當初假設 $y \prec z$ (即 $y \neq z$) 相矛盾, 故知 $x \neq z$. 得證 $x \prec z$.

接著我們證明 trichotomy 性質. 因 \preceq 為 total order 有 total 性質, 亦即對任意 $x,y \in X$, 我們有 $x \preceq y$ 或 $y \preceq x$. 現若 x = y, 我們得 x,y 滿足 x = y. 而若 $x \ne y$, 則由 $x \preceq y$ 或 $y \preceq x$, 得證 x,y 滿足 $x = y,x \prec y$ 或 $y \prec x$. 現要說明 x,y 僅能滿足 $x = y,x \prec y$ 或 $y \prec x$ 其中之一. 首先若 x = y,依 \prec 之定義我們知不可能 $x \prec y$ 或 $y \prec x$ 成立. 而若 $x \ne y$ 我們用反證法證明不可能 $x \prec y,y \prec x$ 兩者皆成立. 假設 $x \prec y,y \prec x$ 兩者皆成立,由 \prec 之定義知 $x \preceq y$ 且 $y \preceq x$. 再次由 anti-symmetric 性質,得 x = y. 此與 $x \ne y$ 之假設相矛盾. 得證不可能 $x \prec y,y \prec x$ 兩者皆成立.

同樣的, 若已知 \prec 為 X 上的 strict total order, 對任意 $x,y \in X$, 我們定義 $x \leq y$ 若且唯 若 x = y 或 $x \prec y$, 則 \preceq 會是 X 上的 total order.

Question 4.9. 假設 X 為 nonempty set 且 \prec 為 X 上的 strict total order. 若對任意 $x,y \in X$, 我們定義 $x \preceq y$ 若且唯若 x = y 或 $x \prec y$, 試證明 \preceq 會是 X 上的 total order.

從這裡, 我們知道給了 X 上一個 total order 就等同於給了一個 strict total order, 反之亦然. 所以當談論到 total order 的性質, 我們都可以轉換成 strict total order 的性質. 為了方便起見, 當我們用 \preceq 表示一個 total order, 則會用 \prec 表示其對應的 strict total order, 反之亦然.

有了 order 的關係後, 我們就可以定義所謂的上下界, 最大最小元素. 假設 (X, \preceq) 為 poset. 對於 X 中的非空子集 T, 我們說 $u \in X$ 是 T 的一個 $upper\ bound$, 表示對於任意 T 中的元素 t 皆满足 $t \preceq u$. 假設 $u \in X$ 是 T 的 upper bound 且對任意 T 的 upper bound u', 皆满足 $u \preceq u'$, 則稱 u 為 T 的 $least\ upper\ bound$ (或 supremum). 相對應的, 我們稱 $l \in X$ 為 T 的一個 $lower\ bound$, 表示對於任意 T 中的元素 t 皆满足 $l \preceq t$. 假設 $l \in X$ 是 T 的 $lower\ bound$ 且對任意 T 的 $lower\ bound$ l', 皆满足 $l' \preceq l$, 則稱 l 為 T 的 $lower\ bound$ (或 $lower\ bound$ l').

要注意, 一般來說 poset (X, \preceq) 的 nonempty subset 未必會有 upper bound 或 lower bound. 而即使有 upper bound 或 lower bound, 仍有可能 least upper bound 或 greatest lower bound 會不存在. 我們看以下的例子:

- Example 4.3.7. (A) 考慮 (\mathbb{R} , \leq) 這個 total ordered set. 令 $T = \{x \in \mathbb{R} : 0 < x < 1\}$. 所有 大於等於 1 的實數都是 T 的 upper bound, 而 1 是 T 的 least upper bound. 所有小於等於 0 的實數都是 T 的 lower bound, 而 0 是 T 的 greatest lower bound. 至於 $\{x \in \mathbb{R} : x \geq 0\}$, 則無 upper bound. 而 $\{x \in \mathbb{R} : x < 1\}$, 則無 lower bound.
- (B) 考慮 (\mathbb{Q} , \leq) 這個 total ordered set. 令 $T = \{x \in \mathbb{Q} : \sqrt{2} < x < \sqrt{3}\}$. 所有大於 $\sqrt{3}$ 的有理數都是 T 的 upper bound, 而所有小於 $\sqrt{2}$ 的有理數都是 T 的 lower bound. 但是 T 沒有 least upper bound. 這是因為若 $u \in \mathbb{Q}$ 為 T 的 least upper bound, 表示 $\sqrt{3} < u$, 但 $\sqrt{3}$ 和 u 之間仍存在著有理數 (這是有理述的稠密性), 也就是說存在 $u' \in \mathbb{Q}$ 滿足 $\sqrt{3} < u' < u$. 既然 u' 為 T 的 upper bound 但又小於 u, 此與 u 為 T 的 least upper bound 相矛盾, 故知 T 沒有 least upper bound. 同理我們知 T 沒有 greatest lower bound.
- (C) 給定 nonempty set A, 考慮 $(\mathcal{P}(A),\subseteq)$ 這個 poset. 對於任意 $\mathcal{P}(A)$ 的 nonempty subset \mathcal{T} , A 是 \mathcal{T} 的 upper bound, 因為對任何 $B \in \mathcal{T}$, 皆有 $B \subseteq A$. 同理 \emptyset 為 \mathcal{T} 的 lower bound. 此時 \mathcal{T} 的 least upper bound 一定存在,事實上 $U = \bigcup_{B \in \mathcal{T}} B$ 會是 \mathcal{T} 的 least upper bound. 這是因為對任意 $B \in \mathcal{T}$, 皆有 $B \subseteq U$, 所以 U 是 \mathcal{T} 的 upper bound. 而若 $U' \in \mathcal{P}(A)$ 是 \mathcal{T} 的 upper bound, 表示對任意 $B \in \mathcal{T}$, 皆有 $B \subseteq U'$, 故由 Corollary 3.3.4, 知 $U = \bigcup_{B \in \mathcal{T}} B \subseteq U'$. 得證 $U = \bigcup_{B \in \mathcal{T}} B$ 會是 \mathcal{T} 的 least upper bound. 例如 $A = \{1,2,3,4\}$ 的 情形, 考慮 $\mathcal{T} = \{\{1,2\},\{1,3\}\}$. 則 $\{1,2\} \cup \{1,3\} = \{1,2,3\}$ 就是 \mathcal{T} 的 least upper bound.

Question 4.10. 給定 nonempty set A, 考慮 $(\mathscr{P}(A),\subseteq)$ 這個 poset. 對於任意 $\mathscr{P}(A)$ 的 nonempty subset \mathscr{T} , 試證明 \mathscr{T} 的 greatest lower bound 存在.

要注意, 一般來說對於 poset (X, \preceq) 的 nonempty subset T, 雖然其 least upper bound 可能不存在, 不過若存在的話它會是唯一的. 這是因為如果 $u, u' \in X$ 皆為 T 的 least upper bound, 則由 u 為 least upper bound 且 u' 為 upper bound, 得 $u \preceq u'$. 同理可得 $u' \preceq u$, 故由 partial order 的 anti-symmetric 性質得 u = u'. 同樣的 T 的 greatest lower bound 若存在的話, 也會是唯一的. 所以我們有以下性質.

Proposition 4.3.8. 假設 (X, \preceq) 是 partial ordered set 且 T 是 X 的 nonempty subset. 若 T 的 least upper bound 存在, 則唯一. 而若 T 的 greatest lower bound 存在, 也會是唯一的.

當 T 的 least upper bound 存在時,由於是唯一的,我們就用 $\sup(T)$ 表示之。同理,我們會用 $\inf(T)$ 表示 T 的 greatest lower bound.

當 (X, \preceq) 是 total ordered set 時, least upper bound 和 greatest lower bound 除了唯一性外還有一個重要的性質. 依定義若 $u \in X$ 是 T 的 least upper bound, 表示如果 $x \prec u$, 則 x 不可能是 T 的 upper bound. 這是因為若 x 是 T 的 upper bound 則會得到 $u \preceq x$ 之矛盾

(注意 \prec 是 strict total order, 所以依三一律, $x \prec u$ 和 $u \preceq x$ 不可能同時成立). 我們有以下 之結論.

Proposition 4.3.9. 假設 (X, \preceq) 是 total ordered set, $T \in X$ 的 nonempty subset 且 $u \in X$ 是 T 的 least upper bound. 若 $x \in X$ 满足 $x \prec u$, 則存在 $t \in T$ 满足 $x \prec t$.

Proof. 利用反證法,假設存在 $t \in T$ 满足 $x \prec t$ 是錯的,表示所有的 $t \in T$ 都不满足 $x \prec t$. 然而 \prec 是 X 的 strict total order,依三一律知, $x \prec t$, $t \prec x$ 和 x = t 必有一項是對的. 因此對所有 $t \in T$ 都不满足 $x \prec t$ 表示對所有 $t \in T$ 都满足 $t \preceq x$. 也就是說 x 會是 T 的 upper bound. 但依假設 u 是 T 的 least upper bound,我們得 $u \preceq x$. 由三一律知此與 $x \prec u$ 之前提相矛盾. 故得證存在 $t \in T$ 满足 $x \prec t$.

Question 4.11. 假設 (X, \preceq) 是 total ordered set, T 是 X 的 nonempty subset 且 $l \in X$ 是 T 的 greatest lower bound. 試證明若 $x \in X$ 满足 $l \prec x$, 則存在 $t \in T$ 满足 $t \prec x$.

接下來我們介紹 poset (X, \preceq) 中的 nonempty subset T 的最大最小元素. 要注意,在 poset 中的最大最小元素其實有分兩種. 由於 poset 中未必任兩個元素是 comparable, 所以一種 T 的最大元素,稱為 maximal element of T, 指的是在 T 中沒有其他元素比它大的元素. 也就是說若 $\mu \in T$ 且不存在 $t \in T$ 满足 $\mu \prec t$, 則稱 μ 為 T 的 maximal element. 這也等同於說如果 $t \in T$ 满足 $\mu \preceq t$, 則 $\mu = t$. 另一種最大元素,稱為 greatest element of T (或稱 maximum element), 指的是所有 T 中的元素都比它小. 也就是說若 $g \in T$ 且對所有 $t \in T$ 皆满足 $t \preceq g$, 則稱 g 為 T 的 greatest element. 至於最小元素也有相對的定義. 若 $m \in T$ 且不存在 $t \in T$ 满足 $t \prec m$, 則稱 m 為 T 的 minimal element. 而若 $l \in T$ 且對所有 $t \in T$ 皆满足 $l \preceq t$,則稱 l 為 T 的 least element (或稱 minimum element). 要特別注意的是, T 的 upper bound 和 lower bound 不需要是 T 的元素,但 T 的 maximal element, greatest element 以及 minimal element, least element 皆要求是 T 的元素. 如同 upper bound 和 lower bound,上述這幾種最大最小元素,並不一定會存在. 我們看以下的例子.

Example 4.3.10. (A) 考慮 (\mathbb{R} , \leq) 這個 total ordered set. 令 $T = \{x \in \mathbb{R} : 0 < x < 1\}$. 很容易看出 T 沒有 maximal element. 這是因為對任意 $\mu \in T$ 皆有 $0 < \mu < 1$, 所以若令 $t = (\mu + 1)/2$, 則有 0 < t < 1, 亦即 $t \in T$ 且 $\mu < t$. 得證 T 沒有 maximal element. 同理 T 也沒有 minimal element. 另一方面若考慮 $T' = \{x \in \mathbb{R} : 0 \leq x \leq 1\}$. 很容易看出 $1 \in T'$ 的 maximal element 也是 greatest element, 而 $0 \in T'$ 的 minimal element 也是 least element.

(B) 考慮 $A = \{1,2,3\}$ 以及 ($\mathcal{P}(A),\subseteq$) 這個 poset. 考慮 $\mathcal{T} = \{\{1\},\{1,2\},\{2,3\},\{1,2,3\}\}$. 則 $\{1,2,3\}$ 是 \mathcal{T} 的 maximal element 也是 greatest element. 而 $\{1\}$ 是 \mathcal{T} 的 minimal element 因為找不到 $B \in \mathcal{T}$ 會滿足 $B \subset \{1\}$. 不過 $\{1\}$ 不是 \mathcal{T} 的 least element, 因為 $\{2,3\} \in \mathcal{T}$ 但是 $\{1\}$ 不满足 $\{1\} \subseteq \{2,3\}$. 另外 $\{2,3\}$ 也是 \mathcal{T} 的 minimal element, 因為我們也找不到 $B \in \mathcal{T}$ 會滿足 $B \subset \{2,3\}$. 另外若考慮 $\mathcal{T}' = \{\{1\},\{1,2\},\{2,3\}\}$. 則 \mathcal{T}' 就沒有greatest element, 而 $\{1,2\}$ 和 $\{2,3\}$ 都是 \mathcal{T}' 的 maximal element. 要注意的是在這情況之下 $\{2,3\}$ 同時是 \mathcal{T}' 的 maximal element 以及 minimal element.

從 Example 4.3.10 我們知道 maximal element 和 minimal element 有可能不唯一. 不過 greatest element 和 least element 若存在的話, 會是唯一的. 事實上我們有以下之結果.

Proposition 4.3.11. 假設 (X, \preceq) 為 poset, T 為其 nonempty subset 且假設 T 的 greatest element 存在. 則 T 的 greatest element 為唯一. 又此時 T 的 maximal element 會存在且唯一, 事實上 T 的 maximal element 就是 T 的 greatest element, 也是 T 的 least upper bound.

Proof. 首先利用反證法, 證明 greatest element 的唯一性. 假設 $g,g' \in T$ 皆為 T 的 greatest element 且 $g \neq g'$. 由於 $g' \in T$ 且 g 為 T 的 greatest element, 依定義我們有 $g' \preceq g$. 同理知 $g \preceq g'$. 由於 \preceq 為 partial order 具有 anti-symmetric 性質, 由 $g' \preceq g$ 以及 $g \preceq g'$ 得 g = g' 之 矛盾. 得證唯一性.

現假設 $g \in T$ 為 T 的 greatest element. 若 $t \in T$ 满足 $g \preceq t$, 則由 reflexive 性質得 g = t. 換言之, 不可能存在 $t \in T$ 满足 $g \prec t$. 得知 g 為 T 的 maximal element. 證得 T 的 maximal element 是存在的. 現若 $\mu \in T$ 為 T 的 maximal element. 由 $\mu \in T$, 知 $\mu \preceq g$. 然而依 maximal element 的定義以及 $g \in T$ 知不可能有 $\mu \prec g$ 的情形發生, 故得 $\mu = g$. 我們證明了 T 的 maximal element 一定就是 T 的 greatest element g, 也同時證得了 T 的 maximal element 的唯一性.

依 greatest element 的定義, 對所有 $t \in T$ 皆有 $t \leq g$, 因此 $g \notin T$ 的 upper bound. 現 對任意 T 的 upper bound u, 由於 $g \in T$, 依 upper bound 的定義, 我們有 $g \leq u$, 得證 $g \notin T$ 的 least upper bound.

Question 4.12. 假設 (X, \preceq) 為 poset, T 為其 nonempty subset 且假設 T 的 least element 存在. 試證明 T 的 least element 為唯一, 且此時 T 的 minimal element 會存在且唯一. 並 證明 T 的 minimal element 就是 T 的 least element, 也是 T 的 greatest lower bound.

Question 4.13. 假設 (X, \preceq) 為 poset 且 T 為其 nonempty subset. 試證明 T 的 least upper bound u 存在且 $u \in T$ 若且唯若 T 的 greatest element 存在. 同樣的, 試證明 T 的 greatest lower bound l 存在且 $l \in T$ 若且唯若 T 的 least element 存在.

假設 (X, \preceq) 為 poset, T 為其 nonempty subset, 從 Proposition 4.3.11 以及 Question 4.12 我們知道當 T 有 greatest element 時 T 的 maximal element 就是 greatest element, 而當 T 有 least element 時 T 的 minimal element 就是 least element. 其實只有當 (X, \preceq) 是 partial ordered set 不是 total ordered set 時,因為並不是任兩元素是 comparable 才需區分 maximal element 和 greatest element 以及區分 minimal element 和 least element. 事實上當 (X, \preceq) 是 total ordered set 時 maximal element 和 greatest element 是一致的,同樣的 minimal element 和 least element 也是一致的.

Proposition 4.3.12. 假設 (X, \preceq) 為 total ordered set, T 為其 nonempty subset. 若 T 的 maximal element 存在, 則 T 的 maximal element 就是 T 的 greatest element.

Proof. 假設 $\mu \in T$ 為 T 的 maximal element. 由於對任意 $t \in T$, $\mu \prec t$ 皆不成立, 故由三一律知 $t \preceq \mu$. 得證 μ 為 T 的 greatest element.

4. Relation and Order

Question 4.14. 假設 (X, \preceq) 為 total ordered set, T 為其 nonempty subset. 試證明若 T 的 minimal element 存在, 則 T 的 minimal element 就是 T 的 least element.

化加红口	1 一 ‡	上症 上	中田	主林	: 中 山 凸	羊	٠
我們利用	1 トズ	、裱入	、豕犬	万 定	延些及	我	•

名稱	需要在 T	性質	附註
g = greatest element of T	yes	$\forall t \in T, t \leq g$	g 存在則 g = μ
$\mu = \text{maximal element of } T$	yes	$(\lambda \in T) \land (\mu \leq \lambda) \Rightarrow \lambda = \mu$	μ 存在且為 total order 則 $\mu = g$
u = upper bound of T	no	$\forall t \in T, t \leq u$	g 存在則 $g = \sup(T)$
$\ell = \text{least element of } T$	yes	$\forall t \in T, \ \ell \leq t$	ℓ 存在則 $\ell=m$
m = minimal element of T	yes	$(\lambda \in T) \wedge (\lambda \leq m) \Rightarrow \lambda = m$	m 存在且為 total order 則 $m = \ell$
l = lower bound of T	no	$\forall t \in T, \ l \leq t$	ℓ 存在則 $\ell = \inf(T)$

最後我們再定義一個重要的名詞, 就是所謂的 well order, 其定義如下.

Definition 4.3.13. 假設 (X, \preceq) 為 total ordered set. 若對任意 X 的 nonempty subset T 其 least element 皆存在, 則稱 (X, \preceq) 為 well-ordered set.

例如對於所有正整數所成的集合,在一般的大小關係之下就是 well-ordered set. 但所有整數所成的集合,在一般的大小關係之下就不是 well-ordered set. 因為例如所有的負整數所成的集合就沒有 least element.

在數學上當我們要處理有無窮多元素的集合時,我們常會用所謂的 Well-ordering Theorem 來處理. 這個定理是說對每一個 nonempty set X, 我們都可以找到一個 total order \preceq 使得 (X, \preceq) 為 well-ordered set.

Example 4.3.14. 對於所有整數所成的集合 \mathbb{Z} , 雖然在一般的大小關係之下不是 well-ordered set. 我們可以找到一個 total order \preceq 使得 (\mathbb{Z}, \preceq) 為 well-ordered set. 考慮以下的 relation: 當 $a,b \in \mathbb{Z}$, 定義 $a \preceq b$ 若且唯若 (1) |a| < |b| 或 (2) |a| = |b| 且 $a \le b$. 在此定義之下 (\mathbb{Z}, \preceq) 為 total ordered set. 因為若 $a \preceq b$ 且 $b \preceq a$, 表示 |a| = |b| (因 |a| < |b| 和 |b| < |a| 不可能同時成立)以及 $a \le b$ 且 $b \le a$, 得證 a = b, 即 \preceq 具有 anti-symmetric 性質. 又若 $a \preceq b$ 且 $b \preceq c$, 表示 $|a| \le |b|$ 且 $|b| \le |c|$, 故得 $|a| \le |c|$. 現若 |a| < |c| 可得 $a \preceq c$. 而若 |a| = |c|,我們當然有 |a| = |b|,故由 $a \preceq b$ 之假設得 $a \le b$. 又因 |b| = |c|,故由 $b \preceq c$ 之假設得 $a \le c$. 依此得證當 |a| = |c| 時可得 $a \le c$,也就是說 $a \preceq c$. 證得了 \preceq 具有 transitive 性質. 至於 total 性質,任意 $a,b \in \mathbb{Z}$ 指為 comparable,故 \preceq 具有 total 性質. 事實上依此定義,我們所得的整數排序方法為

$$0 \prec -1 \prec 1 \prec -2 \prec 2 \cdots$$

我們要說明 (\mathbb{Z}, \preceq) 此 total ordered set 為 well-ordered set. 對於任意 \mathbb{Z} 的 nonempty subset T, 我們先選取 T 中絕對值最小的元素. 若絕對值最小的元素僅有一個, 則依 \preceq 的定 義此為 T 的 least element. 而若絕對值最小的元素有兩個, 則取原本為負的那一個便是 T 的 least element. 即在 \preceq 這個 order 之下, T 有 least element. 得證 (\mathbb{Z}, \preceq) 為 well-ordered set.

Question 4.15. 考慮 \mathbb{Z} 中以下的 relation: 對於任意 $a,b\in\mathbb{Z}$ 定義 $a\preceq b$ 若且唯若 (1) $ab\geq 0$ 且 $|a|\leq |b|$ 或 (2) ab<0 且 $a\leq b$. 也就是說依此定義所得的整數排序方法為

$$0 \prec -1 \prec -2 \prec -3 \cdots \prec 1 \prec 2 \prec 3 \cdots$$
.

試證明在此定義之下 (\mathbb{Z}, \preceq) 為 $total\ ordered\ set.$ 是否此時 (\mathbb{Z}, \preceq) 為 $well-ordered\ set?$

Well-ordering Theorem 和所謂 Zorn's Lemma 以及 Axiom of Choice 是等價的, 等以後我們介紹完 function 的概念後會詳細討論.