Exercise (Week 14)

December 06, 2024

- 1. 假設 $A \in M_{m \times n}$ 且 $\operatorname{rank}(A) = n$. 令 P 表示投影到 $\operatorname{Col}(A)$ 的投影矩陣. 請利用 A, A^{t} 表示 P 並利用矩陣乘法性質 (不要用投影概念) 證明以下敘述:
 - (a) 若 $\mathbf{w} \in \operatorname{Col}(A)$, 則 $P\mathbf{w} = \mathbf{w}$. (Hint: $\mathbf{w} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$)
 - (b) 若 $\mathbf{v} \in \operatorname{Col}(A)^{\perp}$, 則 $P\mathbf{v} = \mathbf{0}$. (Hint: $\mathbf{v} \in N(B)$ for some matrix B. what's B?)
- 2. 考慮 \mathbb{R}^3 利用 dot product 所成的 inner product space. 令

$$W = \{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0\}.$$

以下我們用兩種方法求對 W 的投影矩陣.

- (a) 找出 W 的一組 basis, 並利用此組 basis 得到矩陣 A 使得 Col(A) = W.
- (b) 利用 (a) 中所得的 A 寫下對 W 的投影矩陣 (請將矩陣具體乘開).
- (c) 找出 W^{\perp} 的一組 basis, 並利用此組 basis 得到矩陣 B 使得 $Col(B) = W^{\perp}$.
- (d) 利用 (c) 中所得的 B 寫下對 W^{\perp} 的投影矩陣, 並依此寫下對 W 的投影矩陣.
- 3. 假設矩陣 A 的 column vectors 從左至右依序為

$$\mathbf{w}_1 = (1,3,1,1), \mathbf{w}_2 = (1,1,1,1), \mathbf{w}_3 = (-1,5,2,2)$$

利用 Gram-Schmidt 在 dot product 之下可得到 orthonormal basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$. 令矩 \mathbf{p} \mathbf{q} 的 column vectors 從左至右依序為 $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

- (a) 試找到矩陣 R 使得 A = QR (請確認 R 為 upper triangular matrix),即寫下 A 的 QR decomposition。
- (b) 試利用 A 的 QR decomposition 寫下對 Col(A) 的投影矩陣。
- 4. 此題我們用 normal equations 以及 QR decomposition 求 inconsistent system 的 least squares solution。考慮聯立方程組

$$\begin{cases} x + y - z = 4 \\ 3x + y + 5z = -1 \\ x + y + 2z = 5 \\ x + y + 2z = 1 \end{cases}$$

- (a) 將此聯立方程組寫成 $A\mathbf{x} = \mathbf{b}$ 的矩陣形式並寫下其 normal equations.
- (b) 利用 normal equations 求原方程組的 least squares solution 以及其 error vector (即 $\mathbf{b} \text{Proj}_{\text{Col}(A)}(\mathbf{b})$).
- (c) 利用上一題(b) 所得對 Col(A) 的投影矩陣求出原方程組的 error vector.
- (d) 利用 QR decomposition 寫下與 normal equations 等價的方程組,並利用此方程組求出原方程組的 least squares solution.