next up previous
�U�@��: Sylow p-subgroups ���������Y �W�@��: Second Sylow's Theorem �e�@��: Second Sylow's Theorem

Another group action on left coset

�e�@�`�ҩ� First Sylow's Theorem �ڭ̬O�� H �� G �� H �� left coset �@��. �o�̧ڭ̦Ҽ{ H �� G ���O�@�� subgroup P �� left coset �@��.

�Y G �O�@�� finite group, H �M P �O G �� subgroups. �O S = {a . P | a $ \in$ G} �O G �� P �� left coset �Ҧ������X. �ڭ̩w�q H �� S ���@�Φp�U: ����N�� h $ \in$ H, a . P $ \in$ S, �ڭ̩w�q

h*(a . P) = (h . a) . P.

�Q�ΩM�e�@�`�ۦP���ҩ��i�� (H, S,*) �O�@�� group action. �P�˪��ڭ̤]��

| S| = $\displaystyle {\frac{\vert G\vert}{\vert P\vert}}$. (4.16)

�Ӥ���|�O S0 �O? �Y a . P $ \in$ S0, �h���Ҧ� h $ \in$ H �Ҧ�

(h . a) . P = h*(a . P) = a . P.

�o�i�D�ڭ� a �M h . a �b P ���������U�O�P����, �]�N�O a-1 . h . a $ \in$ P. �]���o�O��Ҧ��� h $ \in$ H ���O�諸, �ڭ̥i�H�g�� a-1 . H . a $ \subseteq$ P. �]���Y a . P $ \in$ S0 �h�ڭ̦� a-1 . H . a $ \subseteq$ P. �Ϥ�, �Y a �ŦX a-1 . H . a $ \subseteq$ P, �h a . P $ \in$ S0. �ҥH�ڭ̱o��

S0 = {a . P | a-1 . H . a $\displaystyle \subseteq$ P}. (4.17)

�o�̧ڭ̭n�����@��� (�M Sylow �w�z�L���u�O�n��M�[��). �Y�ڭ̦p�e�@�`���� G �������� a �ŦX a-1 . H . a $ \subseteq$ P �����@�Ӷ��X {a $ \in$ G | a-1 . H . a $ \subseteq$ P}. �o�@�Ӷ��X�ä��@�w�|�O G �� subgroup (�ʫʳ���), �ӥB P �]���|�]�t�� (���D H $ \subseteq$ P). �ҥH�ڭ̨S���p�e���X�� group action �h�� | S0| �����l. ���L�S�����Y, �b�� Second Sylow's Theorem �ɧڭ̤��ݭn������ | S0|.


next up previous
�U�@��: Sylow p-subgroups ���������Y �W�@��: Second Sylow's Theorem �e�@��: Second Sylow's Theorem
Administrator 2005-06-18