ON POLYNOMIAL WARING-GOLDBACH PROBLEM

CHIH-NUNG HSU

1. INTRODUCTION

Waring’s problem is to prove that every natural number (resp. sufficiently
large number) is the sum of a bounded number of d-th powers. Goldbach’s
problem is to prove that every even number greater than 3 is a sum of
two primes and every odd number greater than 5 is a sum of three primes.
The Waring-Goldbach problem asks for the possibility of expressing natural
numbers as sums of d-th powers of primes (d > 2), with a bounded number
of summands.

For d = 1, the first important result for the ternary Goldbach problem,
due to Hardy and Littlewood in 1923, is an asymptotic theorem. Using the
circle method and a modified form of the Riemann hypothesis, they proved
that every sufficiently large odd number is the sum of three primes. In 1937,
without appealing to any form of the Riemann’s hypothesis and modifying
the method of Hardy and Littlewood, Vinogradov also proved the ternary
Goldbach problem for sufficiently large odd numbers. The best result for the
binary Goldbach’s problem is, due to Chen in 1974, that every sufficiently
large even number can be written as the sum of an odd prime and a number
that is either prime or the product of two primes.

For d > 2, Hua proved the following theorem (cf. [11], theorems 11 and
12): If positive integer s satisfies

2¢ 41 if 2 <d <10,
S
~ | 2¢%(2Ind + Inlnd + 2.5)  if 10 < d,

then every sufficiently large number N can be written as a sum of s d-th
powers of primes provided

(1) N =5 (mod K),
where
K= ] »~,
(p—1)|d

r9 =03 +2,7, = 0, + 1(p > 3), and 6, is the largest integer satisfying p’»|d.
The condition (1) for N arises from the structure theorem of (Z/p"Z)*.
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Also, Hua obtained an asymptotic formula for the number of ways N may
be written as a sum of s d-th powers of primes.

In this paper, I explore the problem of expressing polynomials (over finite
fields) as sums of d-th powers of irreducibles (d > 2). This is a problem of the
same kind as classical Waring-Goldbach problem. We call it the polynomial
Waring-Goldbach problem. Let [F, be the finite field with ¢ elements and
let prime p be its characteristic. Let A = F,[T’] be the polynomial ring over
F, and let A denote the subset of A consisting of all monic polynomials.
Suppose we wish to write M € A in the form

(2) M=2z20428+.. 422
with irreducible polynomials z1, 29, -+ , 25 € A. As in the strict analogue in
A of the classical Waring problem, formulated by Carlitz (cf. [4], chapter
1), we say that the polynomial M is the strict sum of s d-th powers of
irreducibles if the degrees degz; in (2) satisfy degz; < [deg M/d] for all
1 <1i < s, where [z] is the least integer which is greater than or equal to x.
If we restrict the irreducibles z; to be such that
deg M/d < degz; < degM/d+ 1,
then it is easy to deduce that the coefficient of the d - [deg M/d]-th term of
M is equal to
(sgnz1)? + (sgnzo)? 4 - - - + (sgn z,)%,
where sgn z; denote the leading coefficient of z;. Thus our version of the
polynomial Waring-Goldbach problem is to counting the number of the so-
lutions of
M =r P +rP 4. 41, PY
with monic irreducibles Py, Ps, - - - , P; satisfying
degM/d < degP; <degM/d+1, (1<i<s),
and 71,72, , 15 € Ff d satisfying
r1+re+---+ 17, = coefficient of the d - [deg M/d]-th term of M.
The above restriction is the most restrictive degree condition. We denote

this number by G4 ((M). The main result of this paper is given in theorem
10.2: Suppose 2 < d < p and

2¢ 11 if 2<d<11,
—{2d2(2lnd+1n1nd+2)—4d+2 if d>11.
Then for any given integer s; > s, we have
N(s—d) N(s—d)
N Nst '
where the implied constant depends only on d, s, s1, and ¢, and S(M) > 0
provided

(3) M=s (modTP—-T) ifg=pandd=p-—1.

q q

-6(M) K

sz,s (M) -
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The condition (3) arises from the Fermat’s little theorem. The polynomial
Waring-Goldbach singular series &(M) is defined in section 9. Moreover, in
theorem 10.1, we obtain an asymptotic formula G (M) for general poly-
nomial f(z) € Alz].

For polynomial Waring problem and polynomial Goldbach problem (i.e.,
the case when d = 1), we refer to [4], [6], [1], and [18]. The rest of this
Introduction, we survey the procedure for solving the polynomial Waring-
Goldbach problem.

For each positive integer @ and for each polynomial f(z) € Z[z] of degree
d > 1, let the exponential sum

S(/,Q) = ip (2”g("”)) |

In 1940, Hua [10] proved that if the coefficients are relatively prime, then
for arbitrary € > 0,

(4) 1S(f,Q)| < Q" a*e,

where the implied constant depends only on d and €. Another Hua’s estimate
for exponential sums is the well-known Hua’s lemma (cf. [11], theorem 4
or [17], lemma 2.5). Let g(z) denote a polynomial of degree d > 1 with
coefficients in R. Then for 1 <wv <d

(5) / 1

where the implied constant depends only on d and e.

The purpose of sections 2, 3 and 4 is to establish the analogous inequalities
(4) and (5) for polynomial rings over finite fields. Moreover, we remove the
minor term € in our situation. An analogue with e-term of (5) for polynomial
ring is established in [4], theorem 8.13.

Let [F, = Z/pZ be the subfield of F, with p elements. Let 1, : [, — C*
be the canonical additive character defined by

) =exp (2225

where [c] denotes the canonical image of ¢ in F,. Let ¢ : F, — C* be
the additive character defined by 9 (z) = ¢,(Tr(z)) for all € F, where
Tr is the trace map from [, to F,. Let A = F,[T] (resp. K = F,(T)) be
the polynomial ring (resp. rational function field) with coefficients in F,.
Let A, denote the subset of A consisting of all monic polynomials. Let
K. =F,(1/T)) denote the completion of K at the infinite place, in other
words, every a € K, if @ # 0, then a can be expressed in the form

—0oQ
a = Z T,
i=d

2U

N
Y exp(g(x) - y)| dy < N*F
r=1
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where ¢; € F; and c¢q4 # 0. The sign, degree, and absolute value of a are
defined by sgna = ¢4, dega = d, and |a| = ¢%. The residue of a at the infinite
place is denoted by Resy, a = ¢_1. The exponential map E : K., — C* is
defined by

E(a) = (Resx a).

The exponential map F is a non-trivial additive character from K., to C*.
Let Q@ € A, and let

f(z) = agz® + -+ a1z +ag € Alz]
satisfy 1 < deg f =d < p, and (ag, -+ ,a1,Q) = 1. Let

s = 3 E(%)

a€A ,dega<deg @

vro- > 519,

a€A,dega<deg @
(a,Q)=1

In theorem 2.1 and corollary 2.5, we obtain

S(f,Q) < Q" 7, W(f,Q) < |Q|'",

where the implied constants depend only on d and ¢. The first inequality is
an analogue of (4).

Let 9 be the subring of K consisting of a € K with dega < —1. Let
9(z) € K[z] denote a polynomial of degree d with coefficients in Ko,. The
Weyl sum S(g, N) is defined to be

S(g,N)= > E(gb).

beA | degb=N

If g(2) € A[z] is of degree d < p and such that the coefficients are relatively
prime, then in theorem 4.2, we obtain

/ |S(- g, N)|* do < gV ING
m

for all 1 < v < d. This is an analogue of (5). Moreover, using the Vino-
gradov’s idea (cf. [17]), if d < p and s = dl , then in theorem 5.4, we
obtain

/ |S(C¥ -g,N)|25doz & qN(Zs—d-I-(S),
m

where 20 = d?(1 — 1/d)".
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2. EXPONENTIAL SUMS FOR POLYNOMIAL RINGS

Let mx denote the number of monic irreducible polynomials in A of degree
N. The prime number theorem for A is given by

(6) ¢V /N —¢V? <7y < ¢V/N.

Let f and @ be as in introduction. It is easy to deduce

(7) 15(f(2), Q) = [S(f(z) — a0, Q)], W (f (z), Q)| = [W(f(2) — ao, Q)]
and if d =1, then

() S(£,Q) =0.

Therefore, if (Q1,Q2) =1 and ag = 0, then we have

ﬂﬁ@@»=5(ﬂgngQS<ﬂQ”)QQ,

) pA @
v - (1Gear)w (1520

The object of this section is

Theorem 2.1. For any monic polynomial Q € A, we have

1
S(£,Q) < 1QI',
where the implied constant depends only on d and q.
Proof. First, we prove this theorem in the case when ) = P is a monic
irreducible polynomial in A. Let
Yp: AJ(P) - C*,
a
"= E ().
a P
where @ denotes the canonical image of @ in A /(P). Since v is a non-trivial
additive character, ©¥p is also a nontrivial additive character of the finite
field A/(P). Since (aq, -+ ,a1,P) =1and 1 <d < p,
f(z) =age®+ - +ar +ag € A/(P)[z]
is a non-zero polynomial with (deg f,p) = 1. Thus by [16], theorem 2 of
Section 1.4, we obtain

(10) > E ( 3

a€A ,dega<deg P

fﬁj) )¢P(f(&))§(d—1)|1>|é.

Second, we prove this theorem in the case when @Q = PV (N > 2) where P is
a monic irreducible polynomialin A. Let f'(z) = (z—r1)™ - - (z—rs) ™ g(x)
(mod P), where r; € A(degr; < degP) and g(z) (mod P) has no linear
factors. We write

(11) S(LPYY = > S(f,PY),

reA,degr<deg P
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where
fla)
Sr(faPN): Z E(P—N :
a€A,deg a<N deg P
a=r (mod P)
We can write
f(b+ PN"1¢)
Se(f,PY) = Z B (T
b,ceA,deg b<(N—1) deg P,deg c<deg P
b=r (mod P)
) 5 o (£0) PV tef (b
= PN

b,c€A,deg b<(N—1) deg P,deg c<deg P
b=r (mod P)

_ f(b) cf'(b)
- > =55 = s(TY).
beA,deg b<(N—1)deg P c€A deg c<deg P
b=r (mod P)

If r € A(degr < degP) is not one of the r;, then by f'(b) = f'(r) # 0
(mod P) and (8), we have S,.(f, PN) = 0. If r = r; for some 1 < i < s, then

5. (F.PY) = B <f]§7]“$)> 3 E (f(ri +z;b]>v—f(m>> .

beA ,deg b<(N—1)deg P

Let o; be the greatest integer for which P? divides all the coefficients of the
polynomial f(r;+Px)—f(r;). Since 1 < deg f =d <pand (ag,--- ,a1,P) =
1, from lemma 2.3 (2), we have 2 < 0; < d. Thus

P77 S (i, PN=7)| i N > oy,

12 S, (f,PN) =

where g;(z) = P~ % (f(r; + Pz) — f(r;)). Combining these, we obtain
(13) IS(LPMI< Y PSP+ Y 1PN
1<i<s,0, <N 1<i<s,0;>N

By induction on N. Since 0; < d and s < d, the first term of the right side
of the above inequality is

« |P|ei1=1/4)| p(N=00)(1=1/d) | pN(I=1/d),
The second term is also
< |P|N(1_1/d),

because N < g; < d. Therefore the proof of Q = P" is completes. In order
to deal with the general case, we need

Lemma 2.2. Let P be a monic irreducible polynomial in A satisfying

(ad,--- ,al,P) =1.
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Then we have
|S(f, PN)| < max {1, (d — 1)|P|1/d—1/2}|P|N(1—1/d),

if gdes P > 2d oraqg €Fy and a; =0(1 <i<d-—1).
Proof. We prove this lemma by induction on N. When N = 1, it follows

from (10). Assume this lemma is true for 1,2,--- | N — 1. Let oy, g;, m;, and
s be as above. Then by (12), we have

ISP < Y PSPV YD [P

1<i<s,0;<N 1<i<s,0;>N
< max{l, (d _ 1)|P|1/d71/2}|P|(N71)(171/d) x

Z |p|(rfrl)/d + Z |p|(N*1)/d

1<i<s,0, <N 1<i<s,0;,>N

s
< max {1, (d - 1)|P|1/d71/2}|P|(N71)(171/d) Z |P|(0'i71)/d‘
=1

By lemma 2.3, 1 < 0; — 1 < m,;. Thus

i(ai—l)gimigd—l.

i=1 i=1

If g4°8 P > 27 then |P|Y/4 > ¢t P/ > 2 5; — 1 > 1, and we get

Z |P|(0'i*1)/d < |P|Zf:1(0'i*1)/d < |P|(d*1)/d — |P|17%.

i=1
If ag € Fy and a; = 0(1 <7 < d—1), then s = 1,01 = d, and we get
|P|(d71)/d _ |P|171/d‘

Combining these, the proof of the lemma is complete. O

Now go back to the proof of theorem 2.1. By (7), we may assume that ag = 0.
Let Q@ = P"'P)*--- P" be a monic polynomial in A, where P;, P,--- , P,
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are all the distinct irreducible factors of Q. By (9) , we have

l

o fis ()

by lemma 2.2 and (6),

l

<[ I max{1@-np=2y ) IR0
deg P;>d i=1
<|QI,
where the implied constant depends only on d and gq. O

Lemma 2.3. Let f(z) = agz® + -+ + a17 + ag € Alz] be a polynomial of
degree d with 1 < d < p. Then for any monic irreducible polynomial P with
(ag,- - ,a1,P) =1, we have
(a) If r € A,r (mod P) is a root of multiplicity m of f(x) =0 (mod P)
and o is the greatest integer for which P? divides all the coefficients of
the polynomial f(Pxz + 1) in z, then 1 <o <m.
(b) If r € A,r (mod P) is a root of multiplicity m of f'(z) =0 (mod P)
and o is the greatest integer for which P? divides all the coefficients of
the polynomial f(Pz + 1) — f(r) in z, then 1 <o —1 < m.

Proof. To prove (a), we can write

f(@) = (z —r)" fi(z) + P fa(z),
where Pt fi(r) and deg fa(z) < m. Then f(Pz +r) = P™fi(Pz +r)z™ +
Pfo(Pz 4+ ). Since f1(Pz +r) = fi(r) (mod P) and Pt fi(r), we have
1 <o <m.

To prove (b), let f3(z) = f(Px+ 1) — f(r). Since d < p, o is also the
greater integer for which P divides all the coefficients of the polynomial
fi(@) = Pf'(Px+r) in 2. Thus o — 1 is the greatest integer for which P71
divides all the coefficients of the polynomial f'(Pz + r) in z. By (a), we
obtain that 1 <o —1 <m. O

Corollary 2.4. Let f,Q be as before. If deg@Q > N, then we have
>, E (@> < PlQ|' 4,
acAy,dega=N Q
where the implied constant depends only on d and q.

Proof. Let

N(a) =

1 ifae Ay anddega = N,
0 otherwise.
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Then for each o € A, satisfying dega < deg (), we have
_ ar —rb
oo 2 H(5)5 5(3)
reA,degr<deg @ beA 4, degb=N
Thus, we get
Z E <f (a))
a€A ,dega=N Q
- Y E (—f(“)> N(a)
a€A ,dega<deg Q Q
£(12)

=R Y
ORI

acA ,dega<deg @
reA,degr<deg @ beA ;,degb=N

_ fla) +ar —rb
PR E(i()Q > 5(5)
a€A ,dega<deg @ beA |, degb=N
reA,degr<deg Q
If degr < deg @ — N, then

> @)-rE )

beA,degb=N

If degr > deg @ — N, then
—rb
S E (—T> =0.
beA | ,degb=N Q
This implies

I

a€A ,dega=N

< gV desQ Z ‘ Z B (f(a)Q+ C”") ‘

reA,degr<deg Q—N a€A,dega<deg@

let (ada"' , a2, a1 +T7Q) :QT‘

_ N-degQ (f(a)+ar)/Q,
A 2 12 E( Q/Qr )‘

reA,degr<deg Q—N a€A,dega<deg@
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by theorem 2.1

< gl e > PANEAL

reA,degr<deg Q—N Qr
by deg@Qr < D

< qudegQ Z qD/d|Q|171/d
reA,degr<deg Q—N

< qD/d|Q|171/d‘

Corollary 2.5. Let f,Q be as above. Then we have

_1
W(f,Q) < Q' 4,
where the implied constant depends only on d and q.

Proof. By (7), we may assume that ap = 0. First, we prove this theorem in
the case when Q = PV (N > 1), where P is a monic irreducible polynomial
in A. By (11), we have

W(f,PN)==So(f,P")+ > S(f,PY).
reA,degr<deg P

Hence

(14) (W (f,PV)| < > |S,(f, PY)).

reA,degr<deg P

If N =1, then by (10), we have
(15) W(f,P) < d|P].
If N > 2, then by (14) and (12), we have
W(f, PN) < |P|NO-1/d),
With (15) at hand, a slight modified proof of lemma 2.2, we obtain that
(16) W (£, PY)| < max {1,d|P|/4-1/2} | pNO-1/0),

if gieeP > 24 or a4 € Fy and a; = 0(1 <4 < d—1). Now let Q =
P P}? --- P" be a monic polynomial in A, where Py, Py,--- , P; are all the
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distinct irreducible factors of Q. By (9), we have

o i (45

by (16) and (6),

< | [ max{Ldp 2} ) |pm@ D pmt-1/d
deg P;>d

1
< Q'
where the implied constant depends only on d and gq. U

3. AN ESTIMATION FOR SUM INVOLVING THE DIVISOR FUNCTION

Let 7(a) denote the number of solutions of sgn(a)~'a = ajas---a;;;

with a; € Ay if 0 # a € A. For any monic irreducible polynomial P, let

Xx(P,i) > 0 for all integer 7 > 0. Let function Gy : A — R satisfy Gy (a) >0
for all @ € A and positive integer V. Let sequences < Ry > and < Xy >
satisfy Ry > 0, Xy > 0 for all positive integer N. Then fix functions Gy, x,
and sequences < Ry >, < Xy >, we have

Lemma 3.1. Suppose that there exist positive real numbers r,C, and posi-
tive integer | such that

x(P,ip(V
> Gyla) <Ry, > (@) < Ry [[ =5 T
ac€A,dega<Xy aEA,degagXN P|V
Via

for all N € N and V € A, with degV < rXy, where ip(V) denotes the
greatest integer for which PiP(V)|V; also such that

o0
> i+ 1) (Pd) < C,
i=1
for all monic irreducible polynomials P. Then as N goes to oo, we have
Z 7(a)Gy(a) € Ry max{X§,1},
ac€A dega<Xy

where the implied constant depends only on r,C, and [.

Proof. 1t is convenient to let G = Gy, R = Ry, and X = Xy. Given X,
write any o € A(dega < X) as a = Py Py--- P,V where P; run through
all monic irreducible factors of a of degree > rX. Let V; € A, denote a
factor of V' such that degV; < rX and degV; > deg D for all D|V with
degD < rX, let Vo € A, denote a factor of V/V; such that degV, <
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rX and degV, > deg D for all D|(V/V1) with degD < rX, and so forth.
Suppose that this process ends at the n-th step. Then V' can be expressed
as sgn(V)Vy---V,. The n is called the index of a, and Vi,---,V, will be
called the characteristic factors of a. Since dega < X and degV,,—1 > rX/2,
we have

m<1/ryn—1<2/r
and

mi(a) <271 (V1) - 1 (V) < 20m(VA) -~ 71(Va).

This implies that

27 if n=0,

Ti(a) < 2%271(‘/],)171 o> 1.

Write

Y. n@Ga)= Y U,

a€A,dega<X 0<n<1+42/r

where U,, denotes the part of this sum which are taken over ¢ with index n.
If n =0, then we have

Up<2r Y Gla)<27R.
a€A ,deg a<X

If1 <n<1+42/r, then

n
Un < 2% Z Un,ia
i=1

in which

Uy = > amm YT Gl),

VeA,,1<deg V<rX a€A ,deg a<X
Via

where the double asterisks means summation over a with index n that have
V as their i-th characteristic factor. Therefore, if V = PlleQd2 - P4 where
Pj are distinct monic irreducible polynomials, then

S Gw< Y <RHX§§|‘Z

acA,dega<X acA,dega<X
Via Via



POLYNOMIAL WARING-GOLDBACH PROBLEM 13

Since 71 (V) = (d1 + 1)(d2 + 1) - - (ds + 1), we obtain

S
(dj +1)"x (P}, d;)
Uni < R Z H |Pj|
VEA;,1<deg V<rX j=1 J

<k ] (1 # 3 ) 1)|Z;T((P’ ﬂ)

P monic irreducible i=1
deg P<rX

byn<1+2/r

o ()

P monic irreducible
deg P<rX

<R-exp|C Z |P|~!
P monic irreducible
deg P<rX
by (6)

< Rmax{exp(Cln(rX)),1} <« Rmax{X%,1}.
Combining these, we complete the proof. O

Lemma 3.2. Let f(x1,22, - ,%,) be a polynomial of degree d with coeffi-
cients in A. Further, give a monic irreducible polynomial P such that not
all the coefficients of f are multiples of P. Then the number of solutions of
the congruence

f(xz1,29,-++ ,2p) =0 (mod P™)
with z; € A,degx; < deg P™ 1s
< min{|P|"™ !, (m + 1) p|mnom/dy
where the implied constant depends only on n,d, and q.

Proof. The proofs are slightly modified of the classical cases. The proofs of
the classical cases may see [11], lemmas 2.2 and 2.3. O

Theorem 3.3. Let f(x1,22, - ,2n) be a polynomial of degree d with coef-
ficients in A such that the coefficients are relatively prime. Then

XN e
Z Tl(f(ala"' 7an)) < maX{an,q d }XN17
a1, ,an€A 4, dega; =N
f(alr"'zan)7£0

where the implied constant and Cy depend only on d,n,l,q, and Xy is the
mazimum degree of f(ay,--- ,an) with a; € A4, dega; = N.
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Proof. Let Gn(a) be the solutions of f(zy, -+ ,z,) = a withz; € A, degz;
nX
= N, and let Ry = max{¢"",q 7 }. Then we have

> n(f(a1, -+ ,an)) = > 7(a)Gnl(a).

a1, ,an€A 4 ,dega;=N a€A,dega<Xn
f(al [ ’an);é(]

Let r = 1/d and for any monic irreducible polynomial P, let

1 if i < d,

P,- == i
x(P.i) {(i+1)”_1|P|1d it i > d.

Then we have

> Gyl = > 1=¢"" < Ry,
a€A,dega<Xy a1, ,0n€A 4 ,dega; =N

Z Gn(a) < max{gN=desVIn 110,
ac€A ,dega<Xy

Via

where M is the number of solutions of f(z1,---,z,) = 0 (mod V) with
z; € A,degz; < degV. By Chinese Remainder theorem for A, M is the
product of the number of the solutions of f(z1,---,2,) =0 (mod P»(V))
with z; € A, degz; < deg P’?(V) for all monic irreducible factors P of V.
By lemma 3.2, we get

x(P,ip(V))

M < H |P|n-iP(V) |P|

PV

If degV < rXpy, then combining these, we have

Y Gyle) <Ry ][] x(P,ip(V))

ac€A,dega<Xy PV |P|
Ve
Since r = 1/d, we get
%) , 4
SO+ )P i) = 36+ 10200 4 57 4 1) (201 1=
=1 i<d i>d

= 0(1).

Therefore, by lemma 3.1, our theorem is proved. U
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4. HuA’s LEMMA FOR F,[T]

Let 91 be the subring of K, consisting of a € K, with dega < —1. The
Haar integral for K, is defined to be

/ lda = 1.
m

Throughout this section, let d be a positive integer such that 1 < d < p (p
the characteristic of A), let g(z) € K[z] denote a polynomial of degree d
with coefficients in K, and let D be the maximal degree of the coefficients
of g. The Weyl sum S(g, N) is defined to be

S(g,N)= Y. E(g(b)).
beA . deg b=N

If c € A, we define the difference operator A.g(z) € Ko|[z] by

Acg(z) = g(z +¢) — g(2).
Ifai,az, -+ ,a, € A, we define the iterated difference operator Ay, 4, ...
by
Aav,av,l,...,al =Ny, 00,4, ;007

for the composite operator.

Lemma 4.1. We have

(17) ‘S(QaN)‘ZU < gN@ b Z S(Aaysan 1,019 N)

a1,a2,,ayEA
dega; <N

for all 1 <o <d.

Proof. We prove this lemma by induction on v. If v =1, then

S(e, NP = > E@TN +a) - g(T" +az))
a1,02€A ,dega; <N

= Z Z E(g(TN 4+ az + a1) — g(TN + az))
deg a1 <N degazs <N

= Z Z E(Aalg(TN + az))

deg a1 <N degazs <N

= Z S(AalgaN)

degai <N

as desired. Let us assume that (17) holds for some 1 < v < d. We square
both sides and apply Cauchy’s inequality on the right, using the fact that
there are ¢V polynomials of degree less than N and also using the result
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just proved for v = 1. We obtain

2
2+l N(2vHl—29—2
‘S(g’ N) S q ( v ) Z S(Aavyavfly"Ualg’ N)
a17a27"'7aveA
dega; <N
N(2vt1—20-2) N 2
<" NN 1S(Aay s V)
a17a27"'7aveA
deg a; <N
N(2vHl—(v+1)-1
=4q ( (v+1)=1) Z S(Aav+1,av,---,algaN)'
a1,a2, ,6y+1€A
dega; <N
This completes the proof. O

Theorem 4.2 (Hua’s lemma). Let g(z) denote a polynomial of degree d < p
with coefficients in A such that the coefficients are relatively prime. Then
when 1 < v <d, we have

(18) / |S(- g, N)|* dov < gV TYIN2,
m

where the implied constant depends on D,v,d, and q, Co depends on v,d,
and q. In other words, the number of solutions of

9(@1) + -+ g(wg-1) = g(y1) + -+ + g(y2e—1)
with x;,y; € Ay and degz; =degy; = N is K gV @) NCs,

Proof. We prove this lemma by induction on v. If v = 1, then the integral

/ S(a - g, N)2dar
m

is the number of (b, by) with by,b € A, degby = degby, = N, and g(by) =
g(b2). Fix a by. Since deg g = d, the number of solutions of g(b;) = g(b2) is
less than d. Thus the theorem is obvious when v = 1. Let us assume that
(18) holds for some 1 < v < d. By lemma 4.1

S(a- g, ) <g¥ D N S(Agy w9, N)
a1, ,ay €A
dega; <N
= qN(T)ivil) Z E(alq, - a,9(2))-

a1, a0 €AZEA L

deg a;<N,deg z=N
Ifajag---a, =0, then A, .. 4, 9(2) is a zero polynomialin z. Ifajag---a, #
0, then since A, ... 4,9(2) is a polynomial of degree d — v, the number of
solutions of A, ... 4, 9(2) = 0 is less than d —v. Thus if & # 0, then we have

|S(a- g, N)[* < gN*' =l 4 gV o= R E(alq, - 0,9(2)),

a1, ,apEAZEA L
dega;<N,deg z=N
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where the asterisk means that A, .. 5,9(2) # 0. Multiplying both sides
of the above inequality by |S(a - g, N)|*" and integrating with o € 9, we
obtain

/ 1S(c- g, N)|* " dov < VD / 1S(a- g, N)[* dax
m

N @' —v—1) / Z E(alq, .. a0,9(2))|S( - g, N)[* dov.
al: SavEA, ZGA+
dega; <N,deg z=N

By the induction hypothesis we know that the first term of the right side of
the above inequality is

< gV ) O

The second term of the right side of the above inequality is equal to

N2 1/ N 3 E(a(Aa,,,...,mg(z)

al, e EAZEA L 21, zov EA L
dega;<N,degz=N degz;=N

21)1

+ Z 9(zi) + g(z9u- 1+l)))da

N(2v 7'071)Y

b

=q
where Y is the number of solution of the system

21}71
Dgy a1 9(2) = Z 9(zi) — g(z20-144),
(19) i=1
Ag, 0 9(2) # 0,
a; € A,z,z; € Ap,dega; < N,degz = degz; = N.

Since A, ... .0, 9(2) is a polynomial of degree d — v > 1 in z and each co-

efficient of this polynomial is divided by ajas---a,, for given zi,--- , zov
satisfying

2v—1
(20) > 9(z) — glzav-143) #0,

i=1

the number of solutions of (19) is

21)71

< Ty Z 9(zi) — g(z0-144)
i=1
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By theorem 3.3, we obtain

21)71
+
Y< Y n | Y gm) —g(ze14)
zieA_,_,degzi:N =1

< q(N+D/d)2vNCI
< qNZUNCI,

where the plus means that the z; satisfy (20). This completes the proof. [

5. VINOGRADOV’S MEAN VALUE THEOREM FOR F,[T]
For any d-tuple a = (a1, -+ ,aq) with a; € 9, let
Cn(a) = Z E(agz? + -+ + ay2),
z€A {,degz=N

and let
(21) JS(N):/ / O (@)|Pdan - - day.
m m

The value of the above integral is equal to the number of solutions of the
equations

S

(22) Y —2,)=0 (1<j<d)
i=1
with 2zq1,-++ , 294 € Ay and degz; = N(1 < i < 2s). Given any aq, -+ ,aq4 €

A. Since the integral

[ [ on(@) P Bl (auaa+ -+ aron))des -+ dag
m m

is equal to the number of solutions of the equations

S

(23) Z(zf —zy)=a;  (1<j<d)
i=1
with 2z1,--+ , 295 € Ay, degz; = N(1 <i < 2s), and

// ‘C’N(oz)‘QsE(—(adad-i—---+a1a1))da1---dad
om om

< [ o [ ovtedan-de
m m

so the number of solutions of (23) is < J4(N).
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Let P be a monic irreducible polynomial in A. Given any fixed d-tuple
g = (91, ,9q) with g; € A. Let X(P,g) denote the number of solutions
of the congruences

(24) Z=g; (wod PY) (1<j<d)

i=1
with z; € A degz; < d-degP, and z1,--- , 24 distinct modulo P. Then we
have

Lemma 5.1. If d < p, then

X(P,g) <d.
Proof. Let yi1,--- ,yq be another solution of (24). We have
d d

Yoyl=>"2 (mod P (1<j<d).

i=1 i=1
Let o; and a} denote the elementary symmetric functions of j-th degree of
Y1, ,Yyq and z1,--- , zq respectively. Let

Si=>yl, Sj=)_4.
i=1 i=1

We have

Sj—0185j1+025j 2+ + (—1)j +joj =0,

Si—01S; 1 +05S; 54+ (=1) -j- 0} =0,
for all 1 < j <d. Since j <d <p, and S; = S} (mod P?) for all 1 < j < d,
we get

o; =0} (mod P?),
for all 1 < j < d. Therefore
(x—y1)(z—ya) =(x—2) - (x—25) (mod P?).
Since degy; < d -deg P, degz; < d - deg P, and the z; are distinct modulo
P, the y1,---yq are a permutation of the zq,--- z4. Hence
X(P,g) <d.

Let X (P, g) denote the number of solutions of the congruences
d . .

7 =g; (mod P')  (1<j<d)
=1

)

with z; € A, degz; < d - deg P, and z; distinct modulo P.

Lemma 5.2. If d < p, then we have

d(d—1)
X1 (Pg) <d!-|P| 2 .
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Proof. We have
X1(P,g) = > > X (Pw),

w1 €A, deg wi <d-deg P wy€A deg wy<d-deg P
wi=g1 (mod P!) wg=gq (mod P%)

where w = (wq, -+ ,wq). Since X (P,w) < d! and the total number of
possible choices for w is equal to

|P|(d_1)+...+1+0 — |P|@

)
we have
d(d—1)

Xi(Pg) <dl-|P|">

The main result of this section is

Theorem 5.3. Let d < p, | be positive integers and let s =d-1. Then
Ji(N) < (qV)»= "5

where 26 = d*>(1 — 1/d)" and the implied constant depends only on d, I, and
q.

Proof. The case when d = 1 is obvious. Thus assume d > 2 and we prove
this theorem by induction on . When [ =1, i.e., s = d. Let z1, -+ , 294 be

a solution of (22). Let P be any monic irreducible polynomial in A with
deg P > N. As in the proof of lemma 5.1, we have

(x —2441) - (x—299) = (x — 21) -+ (x — 2¢) (mod P).
Since deg z; < deg P, the 2411, -+ , 224 are a permutation of the zq,--- , 24.
Thus
Ja(N) < dlig"e.
This gives the case [ =1 at once.
Now suppose this theorem holds for [ —1. For any d-tuple g = (g1, , 94)

with g; € A, degg; < j-N, let Ri(g) denote the number of solutions of the
equations

S
Yod=g (1<j<a)
i=1

with z; € A4, degz; = N(1 < i < s), and 21, -, 24 distinct. Let Ra(g)
denote the corresponding number with at most d—1 of the 2y, - - - , z4 distinct.
Then we have

LN)y= > 3 (Rilg) + Ralg)’

g1€A,deg g1<I-N  gg€A,deggqa<d-N
2 2
<2 > > (Ri(9)* + Ra(9)?) -
g1€A deg 1 <I-N  gg€A,deggq<d-N

Hence
Js(N) < 21, + 21,
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where

L= Y Y R?

g1€A degg1<I-N  gg€A,deggq<d-N

To estimate Ip, let f(z) = agz® + -+ + a1z, @ = (ai,--- ,0q), and B =
(21, -+ ,2ag). We have

ns() L ®

;225 €A 4 deg z1=+-=deg zog =N
Z21=R2,8s+1=Rs+2

E (Z f(zz) - f(zs+z)> dal e dOéd
=1
- (¢ 2 2 25—4
= (3) [ ot oxt e e

by Holder’s inequality

1
s

= ((21>2 (/m---/mdal--.dad> (/fm"'/m‘CN(ﬁ)‘Qsth---dozal>i
X (/m.../m\CN(a)\stal...dad>1_5

< (g)zjs(zv)l—%.

Thus if Iy < I, then we get

1

d 2
Js(N) < 21 + 2, < 41, < 4(2> Js(N) s,

This implies

n <) g

Therefore in any case, we have

d 2s
Js(N) < 4° <2> +4h < 1.

It remains to treat I;. Since d > 2, by (6), for large N, there exists a set
A consisting of d?(d — 1) monic irreducible polynomials P with N/d + 1 >
deg P > N/d. Let wgy(z) denote the number of distinct monic irreducible
polynomials P which divide z and deg P > N/d. Given zy,--- ,zq € A4 of
degree N and all distinct, put
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Then we have

degz d*(d—1)

Nd ST 2

Now I; is the number of solutions of (22) with zp,---,z4 distinct and
Zs4+1, " ,Zs+q distinct. Thus, for any solution zj,--- , 295 counted by I,

by the above inequality, there is a P € A such that z1,--- , z4 are distinct
modulo P and 2511, , 2544 are distinct modulo P. Thus

Il S Z II(P)7

PeA

wq(z) <

where I (P) denotes the number of solutions of (22) with z,--- , z4 distinct
modulo P, and 251, , 2544 distinct modulo P.
Let @ = (a1, -+ ,a4),a € A, and P € A, we define

Cn(e,a,P) = Y Elagz"+- +a12).
2€A {,degz=N
z=a (mod P)

We have
2
ney=[ [ | Y onamp)Onaan )
om m

at,,ag€EA
degai, - ,degag<deg P
a1, ,aq distinct

x | Z Cn(a,c, P)‘2572dda1 e dayg.
c€A ,deg c<deg P
By Hoélder’s inequality, we have

\ Z Cn(o,c, P)‘23—2d < | Pl Z \C’N(a,c, P)‘2s—2d.

ceA c€A ,degc<deg P
deg c<deg P

Thus

I,(P) < |P|?s—2d I
1(P) < |P] cEA,dreI;;ac}idegP 3(e),

where I3(c) is the number of solutions of the simultaneous equations

d s
e =2 )= > ((Pzeri+ ) — (Pzi+c)f) (1<j<d)
i=1 i=d+1
with z; € Aj,degz; = degzsq; = N(1 < i < d),degz; = degzsyi =
N —degP(d+1<i<s), 2z, -+ ,2q distinct modulo P, and z511,--+ , 2544

distinct modulo P. A simple application of the binomial theorem shows (cf.
[17], p. 61) that I3(c) is also the number of solutions of the simultaneous
equations

d s

S (d-du)= > P(du-4) (<i<a

=1 1=d+1
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with the variables satisfying the same conditions as before. Since deg zs4; =
N <d-degP(1<i<d),degz; =degzs1; =N—degP(d+1<i<s),and
the number of solutions of (23) is < Jg(N), by lemma 5.2 , we have

d(d—1)

Ii(c) < gV -dP|" 7 - J, a(N — deg P).

Thus taes)
L(P) <digV - [P 75 - Jy_g(N — deg P).
This implies

+d(d2—5)

I < d*(d—1)dlgN max |P|% - Js_qg(N — deg P).
€

Since s — d = d(I — 1), by induction and N/d + 1 > deg P, we obtain
Js(N) < gV rlrjla[{( |P|25+w(qN*degPﬁ(#@*@%d%kﬂd)l*l
S

d(d _ _
N)Qs—d—%%(ﬂa—ud)l ! |P|d2—%d2(1—1/d)l 1

< (q max

PEA
< (qN)Qs—%“)M—%(d2—§d2(1—1/d)l—1) (qN/d)dL%d?(lq/d)l—l

< (gN) T,
This completes this proof. O
Let f(z) denote a polynomial of degree d with coefficients in A.

Theorem 5.4. Let d < p and [ be positive integers, and let s = dl. Then
we have

/ |S(a . f’ N)|2sda & qN(2sfd+5)’
m

where 26 = d?>(1 — 1/d)! , and the implied constant depends only on d,l ,
and q.
Proof. Write
f(2) = agz® + -+ a1z + a9 € Al2].
The number of solutions of the equation

flz1) 44 f25) = f(2s41) + - + f(225)

with z; € A, and degz; = N, is obviously equal to the number of solutions
of the equations

S

(25) S (d-Au) =9 (<i<,
i=1

where g1, - , gq satisfy

(26) adgq + - +a1gr =0

with g; € A and degg; < j-N. Since degg; < j- N, the number of d-tuple
(g1, -+ ,gq) satisfying (26) is
< (qN)1+2+~~~+(d—1) _ qN%d(d—l).
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Fix a d-tuple (g1, - ,gq), the number of solutions of (25) is equal to
/ / ‘ E(ozdzd+---+oz1z)‘2s
z€A+ deg z=N
X E(—(adgd + -4 a1g1))day - - dag
/ / ‘ E(adzd+----i—ozlz)‘%dal---dozd.
zEA+ deg z=N
By theorem 5.3, this integral is
< (qN)Zsféd(dJrl)Jré.

Then we have

/ |S(C¥ - f, N)|25doz & qN(QS—d-I-(S).
m

6. WEYL’S INEQUALITY FOR POLYNIMIAL WARING PROBLEM
Let
9(2) = agz® + - + a1z € M.
The purpose of this section is to estimate the Polynomial Weyl sum S(g, N)

via the result of section 5. The main result of this section is corollary 6.2.
It sharp a result of Effinger and Hayes [4], theorem 8.11.

Theorem 6.1. Suppose 3 < d =degg < p. If there exists Q € A;,h € A
satisfying (h,Q) = 1,N < deg@ < (d —1)N, and
deg(ag — h/Q) < —(deg@ + (d — 1)N),
then we have
S(g,N)= Y.  E(glz)) < "7V,
z€Ay ,degz=N

where 04 = 2d*(2Ind + Inlnd + 3), and the implied constant depends only
on d and q.

Proof. When c € A,degc < N, let
Se)=" Y Elglz+0) —glc)
z€Ay ,deg z=N

= Y B(Yi'+--+Ti2),
2€A ,deg z=N

where

d ; 41 .
(27) Yj:Yj(c):<j>adcd_7+---+(j;,_ >ozj+1c+aj, (1<j<d).
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Obviously we have

S(g, N)| = [S(c)]-
Hence
1S(g, M) =™ > IS
c€A ,degc<N
By Hoélder’s inequality, we have
(28) 1S NP <g™ D S
c€A ,degc<N

For any z € K,

— 00
Z = Z aiTi.
i=d
Define

— 00
{z} = T
i=—1
For a fixed ¢, Y1,---,Y; are also fixed. Now let U(c) be the set of (d — 1)-
tuple (B1,---,B4—1) € M4~ satisfying
deg{f; —Yj} <—jN, (1<j<d-1).
Let
S1 = Z E(adzd + ﬁd,lzd_l + -+ ,312’)
z€A ,deg z=N
Then we have
‘S(C)‘ = ‘Sl‘a
and we obtain
‘S(C)‘% _ ‘51‘25.
Integrating both sides of the above equation, where the integration is taken
over U(c), we obtain

(29) SR = (¢ @D [ [ 18P da
Combining (28) and (29), we get
Stg. WP < @)D S [ s P dsa:

c€A degc<N
By (27), we know that for any c¢; # co,
Ya-1(c1) = Yy 1(e2) = dag(er — ca).

Let 7y = ag — h/Q. Since degry < —(deg@ + (d — 1)N), p > d > 2,
N < deg@, and (Q,h) = 1, we have Q 1 (c1 — ¢2),

deg{d(c1 — c2)ra} < —deg @,

deg{d(CI%QCZ)h} > —deg@.

and
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Thus by degQ < (d — 1)N
deg{Yy_1(c1) — Yg-1(c2)} > —deg@ > —(d — 1)N.

This implies that U(c;) and U(cz) have no common point. Hence we know
that

S(g, N)[?* < (g™)3d-D1 / / 1S, 5dB - dBy 1.
m m
Using

/m.../m|,5’1|25d,61---d5d—1

< /m/gﬂ‘ Z E(ﬁd,lz'kl —|—---—|—I312’)‘2sd,31"'d,3d,1,

z€A ,degz=N
and theorem 5.3 with s =[(d — 1) and d > 2, we obtain

[S(g, N)[?* < (q)2e=1=1 (g) e 3elld=Dd
N(25—1+8)

Thus we have

175)

S(g,N) < g"!' =5,
where 20 = (d — 1)%(1 — -2=)!. If we take positive integer [ satisfying

T d—1
In(d? Ind) In(d? Ind)
_— < —— 41
“(i—1/d) ' STmi-1ya Y
then we have ) ) )
0 <0 -3) <sma
Since
; < d
—1In(1 —1/d) ’
we have

| < dln(d*Ind) + 1.
It follows that

2s < 2ld
1-6 1-9

< 2d(dIn(d?Ind) 4 1)(1

+ ! )
2Ind — 1

1 2Ind Inlnd 1
:2d2<2lnd+lnlnd+—+ ne o nne )

d 2lnd—1 2lnd—1  2dIlnd—d
by d >3
<2d*(2Ind +Inlnd + 3).

Hence we obtain the theorem. O
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In [4], theorem 8.11, we know that if d > 2, then
Combining this with theorem 6.1, we have

Corollary 6.2. Suppose that 2 < d = degg < p. If there exists QQ €
A h € A satisfying (h,Q) =1,N <deg@ < (d—1)N, and
deg(ag — h/Q) < —(deg@ + (d — 1)N),
then we have
S(g,N)= Y.  E(gz)) <"V,
2€A 1 ,deg z=N
where
_j2dtt 4 if 2<d<13,
‘7 22@2Ind + Inlnd +3) if 13 <d,

and the implied constant depends only on d and q.

7. HUA’S INEQUALITY FOR POLYNOMIAL WARING PROBLEM

Throughout this section, let d be a positive integer satisfying 2 < d < p, p
the characteristic of A. Let f(z) = agz®+- - -+a12+ag be a fixed polynomial
of degree d with coefficients in A such that (agq,aq_1, - ,a1) = 1. Let D be
the maximal degree of the coefficients of f. Let N denote a positive integer
satisfying N > D. For any Q € A, h € A withdegh < degQ < N +degay
and (h, Q) =1, let My,,5(h/Q) be the set of o € K satisfying

deg(a — h/Q) < —(deg Q + degaq + (d — 1)N),

and write 9My,; for the union of the Myaj(h/Q) with degh < deg@ <
N + degagq and (h,Q) = 1. We know that Myaj(h/Q) C M and any
two IMmaj(h/Q) have no common point. Let Myin denote the elements
in 9 which are not in any of the sets Mmaj(h/Q). Then we have M =
Mmaj U Mmin. As defined in section 4, let

S(f,N)= Y E(f(b).

beA | degb=N
Lemma 7.1. Suppose
>{d2(d—2)+6 if2<d<9,
~ |d?(2Ind +Inlnd +2) —2d  if 9 < d.
We have
/m |S(af, )| da < gV,

where the implied constant depends only on d and q.
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Proof. By theorem 11.1, there are unique @ € A, h € A such that deg @) <
(d—1)N,(Q,h) =1, and deg(a- ag — h/Q) < —(deg@Q + (d — 1)N). This
implies

deg(a — h/(aqQ)) < —(deg Q + degay + (d — 1)N).
Since o € Mypin and the uniqueness, degayQ > N +degagy, i.e., (d—1)N >
deg@ > N.

When d > 9, by corollary 6.2, we get
S(af,N) < ()77,

where 04 = 2d*(2Ind + Inlnd + 3). Let s = s; + s2. We obtain

[ Istarn)Pda < ()07 [ |(ag, N da
min m

by theorem 54, if S2 > dl, then
- N —d+0
< ( N)251(1 1/04) ) ( )252 d

< (qN)257d7251/0d+5’
where 20 = d?(1 — 1/d)". If we take s; = 2d? and positive integer [ satisfies
2 2
In(d*® Ind) i< In(d® Ind) Y
—1In(1 —1/d) —1In(1 —1/d)
then we have . ) .
— 2 . ]
o< 2d d?Ind  2Ind’

Since d > 9, we have

2s1 4d? .
oq 2d2(2Ind+Inlnd+3) = 2Ind’

Thus we obtain
|S(af, N)|*da < gV 5=,

min

Now since d > 9 and

m <d-1/2,
we have
1< (d— %)(m(d2 Ind)) + 1
=dIn(d*Ind) — Ind — %lnlnd—i— 1
<2dlnd+dInlnd — 2.
Thus

s1+dl < d*(2Ind+ Inlnd + 2) — 2d.
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Therefore if d > 9 and s > d?(2Ind + Inlnd + 2) — 2d, then sy > dl and we
obtain

/ |S(af, N)|*da < gV,
E):nmin
When 2 < d < 9, by the same way, if s > d?(d — 2) + 6, then we have

/ |S(af, N)|*da < gV,

min

O

Lemma 7.2. Suppose o = h/Q + B € Mumaj(h/Q) and deg@ < N. Then
we have v

S(af,N) < L

Q|

where the implied constant depends only on d and q.

Proof. We have
S(f,N)= >, EBlof()

a€A ,dega=N

h-
- X > s L) B
beA ,degb<deg Q a€A ;,dega=N
a=b (mod Q)

R T AON N < T NS

beA ,degb<deg @ Q a€A 4 ,dega=N
Qla

Since dega; < D < N and degh < deg@ < N,
deg(aja’'b) < degag+ (d—1)N +degQ -1 (1 <i<d).
By deg 5 < —(deg Q + degaq + (d —1)N), we get
deg(Ba;a’ 'b) < —1 (1 <i <d).
Since
fla+0b)=ag(a® +da® o+ )+ ag_1 (e +(d—1)a® 204+ )+,
so E(Bf(a+0b)) = E(Bf(a)). By theorem 2.1 and (ag,aq 1, - ,a1) =1, we
obtain
S(af,N) = S(hf,Q) > E(Bf(Qc))
c€A . deg c=N —deg Q
(30) < |Q|171/d . qudegQ

qN

< Qi
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Lemma 7.3. Suppose 2s > 2d+ 1. We have

> / S(af, N)|Pda < ¢V,
h/Q

QeA; deg Q<N 7 Mmaj
heA ,degh<deg @
(h,@Q)=1

where the implied constant depends only on d and q.

Proof. Let a € Muaj(h/Q) and let o = h/Q + B. Since D < N, if cis a
polynomial of degree N — deg @ in A, then

Bf(Qc) = BR Y H(aac®Q + ag_1c ) + ye

for some y. € Ko, with degy. < deg(B - ag) + dN — (N — deg@). Since
d < p, if ¢ runs through over all polynomials of degree N —deg @ in A} and
assume N > D, then 8f(Qc) runs through over all sgn(3- aq)Tde8(5-0a)+dN 4
¢y Tde8(B-aa)+dN—-1 - CN _deg QTdeg(ﬂ'ad)‘FdN—(N—deg Q)—i—y(q, L CN—deg Q)
where ¢; € F; (1 < ¢ < N —deg Q) and y(ci,- -+, cN—deg @) uniquely depends
on ¢ with degy(ci, - ,cn_degq) < deg(B - aq) + dN — (N —degQ). If
deg(a — h/Q) = deg 8 > —degay — dN, then deg(8 - ag) + dN > 0 and
deg(f - aq) + AN — (N — deg Q) < —1 because degf§ < —(deg @ + degay +
(d—1)N). By (30), we get S(af, N) =0. Thus, the sum mentioned in this

lemma is equal to

S(af,N)[*

>

QEA 4 ,deg Q<N
h€eA ,deg h<deg Q
(h,Q)=1

by lemma, 7.2
N 2s
< ¥ (q—l/d> da
QcA  dee Q<N degla—h/Q)<— degag—dN Q|

heA deg h<deg Q
(h,Q)=1

< > >

QeA 1 ,deg Q<N heA,deg h<deg @
(h,Q)=1

& qN(2sfd) Z |Q|172s/d

QEA +,deg Q<N

by 2s >2d +1

/deg(a—h/Q)<— deg ag—dN

qQSN/ |Q|_2s/dda
deg(a—h/Q)<—degagz—dN

< qN(2s—d).
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Lemma 7.4. Suppose 2s > 2d + 1. We have

Z / ‘S(O[f’ N)‘2sd01 < qN(ZS_d)qQSD—N/d’
Mumaj(h/Q)

QEA+,N+1<deg Q<N +tdegaq
heA ,deg h<deg @
(h,Q)=1

where the implied constant depends only on d, s, and q.

Proof. Let f = a — h/Q. Since deg 8 < —(deg@ + degag + (d — 1)N) <
—degag—dN —1and D < N,

Saf,N)y= Y E(h/Q)f(a)

ac€A,dega=N
by corollary 2.4 with (h,Q) =1 and N < deg Q

< qD/d|Q|171/d‘

Thus we have

Z / ‘S(ozf,N)‘stoz
SInma.j(h'/Q)

QEA,N+1<deg Q<N+tdegaq
heA ,deg h<deg @

(h,Q)=1
< Y >
QEA heA,deg h<deg Q

N+1<deg Q< N-+degay (h,Q)=1
/ |Q|2s(1—1/d)da
deg(a—h/Q)<—(deg Q+degay+(d—1)N)
& qfdegadf(dfl)N+(25D/d) Z |Q|25(171/d)

QEA L
N+1<deg Q<N+degaq

& q—degad—(d—l)N—l—(ZsD/d) . (qN—I—degad)?s(l—l/d)-i-l
< (qN)257d7(2s/d)+2 . (qdegad)Zsf(Zs/d)q%D/d

by 2s > 2d 4+ 1 and degag < D

& qN(2s—d)q23D—N/d.
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Combining lemma 7.1, lemma 7.3, lemma 7.4, and

/ 1S(af, N)P*da
m

— / S(af, N)[?*da + > / 1S(af, ) da
mmin mmaj (h’/Q)

QEA,degQ<N+degaqy
heA ,deg h<deg @
(h,Q)=1

we obtain
Theorem 7.5. Suppose d > 2 and

S d*(d—2) +6 if2<d<9,
~ | #(2Ind+Inlnd +2) —2d if9<d.

Then we have
[ 18s WP < g0,
m

where the implied constant depends only on d,s, D, and q.

8. THE MINOR AND MAJOR ARCS IN POLYNOMIAL WARING-GOLDBACH
PROBLEM

Let f,d,aq, and D be defined as in section 7. Let Q € Ai,a € A
satisfy (a,Q) = 1. Let wn(a,Q) denote the number of monic irreducible
polynomials P of degree N with P = ¢ (mod Q). The polynomial Euler phi
function ®(Q) is defined to be the order of (A/Q)*. In [7], theorem 2.4, we
have

q" _ 34deg@  npo g deg@  nyo
N§Q N smedsyeg Ty T

Let a € M and r € F. We define I(arf, N) to be

Iarf,N)= Y E(arf(P)),

deg P=N

(31)

where the asterisk denotes the sum over monic irreducible polynomials in
A. Fix o >0 and let L = olnN. In this section, we assume that N >
max{D,L}. For any Q € A,h € A with degh < deg@ < L + degay and
(h, Q) =1, let Mmaj(h/Q) be the set of a € M satisfying

deg(a —h/Q) < —(deg Q + degaq + dN — L),

and write Mym,j for the union of the Mm,j(h/Q) with degh < deg@ <
L + degag and (h,Q) = 1. Let Myin denote the elements in 9 which are
not in any of the sets Mpai(h/Q).
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Lemma 8.1. Suppose a = h/Q + B € Muaj(h/Q) and deg(a — h/Q) <
—degaq —dN. Then we have

tars,N) = Lo LD ooy + o),

where the constant implied by the O-notation depends only on o, D, and q.

Proof. Since deg 8 < —degaq — dN and D < N, deg(BragP?) < —1, and
deg(Braq_;P*") < —1 for 1 <4 < d. This implies

Harf,N)= Y E((h/Q) -rf(P))-E(Brf(P))

deg P=N
= E(BaarT™) 3" E((h/Q) -rf(P))
deg P=N
= B(BagrT™) Y S B(WQ) - rf(P)

a€A,dega<deg@ deg P=N
(a,Q)=1 P=a¢ (mod Q)

= EfagrT™) Y. E(WQ) -rf@) Y 1
a€A ,dega<deg Q deg P=N
(a,Q)=1 P=a¢ (mod Q)
by (31) and deg @ < oIn N + degay
= E(BaqrT™) > E((h/Q) - f(a)) X

acA ,dega<deg @
(a,Q)=1

again by deg @ < oln N + degay

_ N W(rf.Q) . dN o . N/2
=N 3(Q) E(Baq-rT*") + O(N’ - ¢'7).

O

Lemma 8.2. Suppose a = h/Q + B € Mun,j(h/Q) and deg(a — h/Q) >
—degaqg — dN. Then we have

I{arf,N) < N7 - ¢"/2,
where the implied constant depends only on o and q.

Proof. We write
degf = —degaq —dN +1—1,



34 C.-N. HSU

where [ is a positive integer such that | < oln N — deg (@) because o €
Mmaj(h/Q). Thus we have

Harf,N)=" > B((h/Q)-rf@) Y, EBrf(P)).
a€A ,dega<deg @ deg P=N
(a,Q)=1 P=a (mod Q)

Given any c € A with degec < N — 1, since dega; < D < N,
deg(a; P 'c) < deg(ade_lc) <degag+dN —1—-1 (1<i<d).
By deg 8 = —degag —dN +1 — 1, we get
deg(Ba; P tc) < =1 (1 <i<d).
Combining this and
F(P+¢) = ag(Pl+dPY e+ ) 4 ag 1 (P 4+ (d— 1) P2 )£+

we have E(Bf(P+c)) = E(Bf(P)). Therefore, for any y € A with deg(P—
y) < N — [, we have

(32) E(Brfly)) = E(Brf(P)).

Since D < N, if b is a polynomial in A, of degree [, then Bf(bTN™!) =
,BT(d_l)(N_l)(addeN_l + ad_lbd_l) + yp for some y € Koo with degy, <
deg(f - aq) + dN — I. Since d < p, if b runs through over all polyno-
mials of degree [ in A, then Bf(bTV~!) runs through over all sgn(f -
ad)Tdeg(6~ad)+dN + by Tdeg(Braa)+dN=1 4 .. 4 p pdeg(f-aq)+dN=1 +y(b1,--- ,by),
where b; € F,(1 <i <1) and y(by,--- ,b;) is uniquely depending on b (or b;)
with degy(by, -+ ,b;) < deg(B-aq)+dN —1. Since deg(f-aq)+dN —1 = —1,
given any u € I[F;, the number of polynomials bI'N—! € A, such that
degb = | and Reso (Brf(bTN7)) = u is equal to ¢!~'. Combining (32)
and [7], theorem 2.4, the number of monic irreducible polynomials P such
that degP = N, P =a (mod @), and Res, (Brf(P)) = u is equal to

¢! <L + O(qN/2)> _ + 0>V
N-®(Q) N-®(Q) -
Thus we have
* N-1
Z E(Brf(P)) = Z () (NQTWQ) I O(q(N/2)+z)>
Pzieg éjm:o]c\if Q) uefa

= O(q/PH).
Since [ < L — deg @), we have
Larf,N)= Y  E((h/Q)-rf(a) O™

a€A ,dega<deg Q
(a,Q)=1

_ O(q(N/2)+l+deg Q)
= O(N7 - ¢V/?).
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O

Lemma 8.3. Suppose oo > 0 and o > 25%(oq + 1)d. If o« € My, then we

have
N

q
I(Oé'f'f,N) < Wa

where the implied constant depends only on d,oq, and q.
Proof. By theorem 11.1, there are unique @@ € A, h € A such that deg @ <
dN — L,(Q,h) = 1, and deg(a - ag — h/Q) < —(deg @ + dN — L). This
implies
deg(a — h/agQ) < —(deg @ + degay + dN — L).
Since a € Myin and the uniqueness, degaq@ > L + degag, i.e., dN — L >
deg@Q > L. Since deg @) > L and N > D, we have
E(arf(P)) = E((rh/asQ)f(P))E((a — h/aiQ)rf(P))
= E((rh/adQ) f(P)).

Therefore, by theorem 11.8, o > 26¢(0 + 1)d, and dN — L > deg Q > L, we

obtain
N

S B((rh/aaQ)f(P)) < +

Noo’
deg P=N
Combining these, we have

qN

Noo

I(arf,N) <

9. THE POLYNOMIAL WARING-(GOLDBACH SINGULAR SERIES

Let f(z) be a polynomial over A of degree 2 < d = deg f < p such that
the coefficients are relatively prime and f(0) = 0. Fix a positive integer s.

Let ry,re,--- 15 € FY d, and let M be a polynomial in A. The polynomial
Waring-Goldbach singular series G(M) is defined to be

[[w s, Q) .
B swn=Y N S (),

QEA L heA (h,Q)=1
deg h<deg @

By (9) and f(0) =0, it is easy to deduce

P
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where the product runs through all monic irreducible polynomials P in A,
and

- H W (hrif, PN) .
Sp(M)=1+Y > = TP ) <_ﬁ>.

N=1  heA,Pth
deg h<N deg P

In this section, we study the properties of the polynomial Waring-Goldbach

singular series when f(z) = z%.

Lemma 9.1. I[f N >2,P{h, and f(z) = 2%, then
W (hf,PY) =0.

Proof. Let a = a1 —i—azPN*l, where a1,a2 € A,dega; < (N—1)deg P, degas
< deg P, and (a1, P) = 1. Then we have

a® = af + da%LayPV! (mod PV).

Hence we deduce

h d hd d—lPNfl
W (hf,PN) = S 3 E( o1+ haay “2>

PN
a1€A,(a1,P)=1 as€EA
deg a1 <(N—1) deg P deg az<deg P

ha$ hda‘li_lag
B 2 v (ﬁ> 2 " ( 2
a1€A (a1,P)=1 a2€A
deg a1 <(N—1)deg P deg azx<deg P

by (hdal™', P) =1 and (8)
= 0.

Let Xs(M, P) denote the number of solutions of the congruence

rmzl 4 4rzl =M (mod P)

=
in 21,29, -+ ,2s € A with z; # 0 and deg z; < deg P.
Lemma 9.2. We have

X, (P, M) = % - Sp(M).
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Proof. We have

1 h dy ... d_ pp
Xs(M, P) = i 2. > E( et ;rsas )>
| | a17"'7aseA heA
a;#0,deg a; <deg P deg h<deg P
1 u hM
=1 > IIwrit,P)E <—?>
heA  i=1
deg h<deg P
by lemma 9.1 and the definition of Gp (M)
®°(P)
= Sp(M).
1P|
Hence we obtain the lemma. O

Now suppose that F;d # {1}, in other words, 2 < d < (p —1)/2. Let ¢
be the cardinality of . Then we have
so_p=t Sp=loy
It follows from Cauchy-Davenport theorem (cf. [14], theorems 2.2, 2.3) that
the number of z{ + 2§ +- - -+ 2{ € Fy for all z; € F is > min{p, s(6—1)+1}.
Since d0 > p—1and p—1 > 2d, if s > 2d, then we have s(6 — 1) +1 > p.
Thus if F} d # {1} and s > 2d, then there exist 21, 29, -+ , 25 € )} satisfying

(34) A4+ +20=0€T,.

In [15], Schwarz showed (the Waring problem for finite fields) that if s > d,
then the equation

(35) A48+ +24=M (mod P)

have a solution with z; € A for each M € A. Combining this with (34) and
r; € B d, we obtain

Lemma 9.3. Suppose that ]F;,(d # {1}, in other words, 2 < d <p—1. If
s > 3d, then X4 (M, P) > 0 for all monic irreducible polynomial P € A
and M € A.

Lemma 9.4. Suppose that F;d = {1}, in other words, 2 < d=p—1. Then
we have
(a) If ¢ > p* and s > d + 1, then X,(M, P) > 0 for all monic irreducible
polynomial P € AL and M € A.
(b) If ¢ = p? and s > 2d + 1, then X4(M, P) > 0 for all monic irreducible
polynomial P € AL and M € A.
(c) Ifg=p3p>5, and s > (d+ 1)(d + 2)/2, then Xs(M,P) > 0 for all
monic irreducible polynomial P € Ay and M € A.
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(d) Ifg=p3 p=3, and s >3, then X;,(M, P) > 0 for all monic irreducible
polynomial P € A, and M € A.
(e) If ¢=p, and

o> (d+1)(d+2)/2 ifp>5,
- ifp=3,
then X4(M, P) > 0 for all monic irreducible polynomial P € A and
M € A with

M=s (modT?-T).
Proof. To prove (a), it follows from [12], Example 6.38 that if ¢ > p*, then
there exist a1, az € Fy satisfying
(36) ad +ad=1.
Since p- 1% = 0, again by (35), for any M € A, there exist 2,23, -- ,2 € A
satisfying 1 <1 <d+1=p, P{z, and
A4+ 42l =M (mod P).
Using (36), we have
423+ (a12)? + (a9z)? =M (mod P).

Thus if s > d + 1, then X (M, P) > 0 for all monic irreducible polynomial
PecAjand M € A.

To prove (b), since 2 < d=p—1, p is an odd prime number. Let g be a
generator of F*. Then (grt1)/2yd = _1 je.,

(gPt1/2)d 114 — o,

Combining this with p - 1¢ = 0 and (35), we obtain that if s > 2d + 1, then
Xs(M, P) > 0 for all monic irreducible polynomial P € A and M € A.
To prove (c), by [3], corollary to theorem 1, there exist 21, 22, -+ , 21 € Fyf

satisfying 1 <1< (p+1)/2 and —1 = 2{ + 2§ + - - - + 2z{!. Thus we have
Atag+e A +17=0,1<1< (p+1)/2),
p-19=0.
Since p > 5, (p,l + 1) = 1. By elementary number theory, we know that if
s>p(l+1)—p—(I+1)+1 = dl, then there exist integers x,y > 0 satisfying
s =pz + (I + 1)y. Thus there exist 21,22, , 25 € F) satisfying
z‘li+z‘21+---+zg:0.

Combining this with again [3], corollary to theorem 1, we obtain that if
s> (d+1)(d+2)/2 >dl + (p+1)/2, then Xs(M,P) > 0 for all monic
irreducible polynomial P € A, and M € A.

To prove (d), it is easy to check that there exist a1,a2 € F satisfying
a? + a4 = 1. For example, in Fy; = F3[T]/(T? — T — 1), taking a; = T? and
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az = T?+2T. Combining this with 12+ 12412 = 0, we obtain that if s > 3,
then there exist 21, 29, -+ , 25 € F satisfying

24+ 22 =0.

Combining this with [3], corollary to theorem 1, if s > 3, then X (M, P) > 0
for all monic irreducible polynomial P € A, and M € A.

To prove (e), it follows from (a), (b), (c), (d), and the assumption of
(e). O

Lemma 9.5. Suppose that f(z) = 2% and 2 < d < p. Then if s > 5, then
S(M) converges for all M € A.

Proof. Tt follows from lemma 9.1, (15), and |P|/®(P) < |P|/* (cf. [4],
lemma 8.9) that we have

ds|P|s/2
®s(P)

|Gp(M) —1| < |P|- &L d°| |8/

By (6) and s > 5, we obtain

d°|P 1—s5/2+€ q_z . d* i(l—s/2+e€)
ZP: 1P| <Y Ty

=1

o0
< Z 5 gi(e=1/2),
i=1

Thus
&(M) = [[&p(M)
P
converges. U

The main result of this section is

Theorem 9.6. Suppose that f(z) = 2% and 2 < d < p. Then if

3d if2<d<p-—1,
s> w ifd=p—1andp>5,
3 ifd=p—1andp=3,

then 6(M) > 0 for all M € A with M = s (mod T? —T) if ¢ = p.

Proof. Tt follows from lemmas 9.2, 9.3, and 9.4 that Sp(M) > 0. By lemma
9.5 and

P
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we have G(M) > 0. By lemma 9.1, we have

HW(hrif,P) .
srn =1+ § S s (=)

heA,Pth
deg h<deg P
by (15)
s
_ dy/|P|
>1—|P|-
[Pl =1

>1-— dS|P|1—S/2
if |[P| > d**, then we have
>1-— |P|1—s/2+1/4.
Since s > 5, by (6), we obtain

s = [ sen) ] (1—q;/4>>0.

|P|<d4s i>Ing ds

10. THE POLYNOMIAL WARING-GOLDBACH PROBLEM

Let d be a positive integer satisfying 2 < d < p, p the characteristic of
A. Let f(2) = agz® + -+ + a1z + ag be a fixed polynomial of degree d with
coefficients in A such that the coefficients are relatively prime and let D be
the maximal degree of the coefficients of f. Let M be a polynomial in A
with deg M > D and let rq,--- ,rs € F;d satisfy

sgn(aq) - (r1 +r2 + -+ +rs) = coefficient of the dN-th term of M,

where the integer N satisfies (deg M —degag)/d < N < (deg M —degagy)/d+
1. We observe that if deg M < dN, then ry + 19+ -+ + r; = 0. Further, let
G f,s(M) be the number of monic irreducible polynomials Py,--- ,P; € A,
each of degree IV, such that

M =rif(P) + -+ rsf (Ps).

For fixed f,s,r1, - ,rs, and M, the polynomial Waring-Goldbach singular
series (M) is defined in (33). With &(M) at hand, the asymptotic formula
for the polynomial Waring-Goldbach problem is given in
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Theorem 10.1. Suppose

N 2¢ 41 if 2<d<11,
~ | 2d?(2Ind + Inlnd +2) —4d+2  if d > 11.

Then for any given integer s > s, we always have

where the implied constant depends only on d, D, s, s1, and q.

Proof. Let L = 0Iln N, Mmaj(h/Q), and Myin be defined in section 8. Then

we have

Gys(M) = /m (H I(ar;f, N)) E(—aM)da
=1
= / (ﬁ I(ar;f, N)) E(—aM)do +
Mmin \j=1
> [11(erit, N)) E(—aM)de.

QEA . deg Q<L-+degay ” Pmaj(h/Q) <i1
h€eA ,deg h<deg @
(h,Q)=1

For d > 11, since s > 2d*(2Ind + Inlnd + 2) — 4d + 2, the integer ¢t =
[d?(2Ind + Inlnd + 2) — 2d] satisfies s — 2¢ > 0. In lemma 8.3, let og > 51,
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if o > 25¢(y + 1)d, then we have

/zmmin (H I(arif, N)) E(—aM)da

(N(m) /H\Icmf, )|da

by Cauchy’s inequality

1/2t
(s—2t)
<t (H/ [T(arsf, N)[* d)
(s—21) 2t 1/2t
<t H / S(arsf, N)"do

by theorem 7.5 and ¢t > d?(2Ind + Inlnd + 2) — 2d

qN(572t)

< TNe A

N(s—d)
Ns1

N(2t—d)

<<q

For 2 < d < 11, since s > 27 4 1, if 0 > 25¢(g + 1)d, then by lemma 8.3,
we have

/smmin (H I(arif, N)) E(—aM)da

<NUO> /H\Iomf, )|dex

by Cauchy’s inequality

) H/ ‘I arif, N

1/2¢

|/\

1/2¢

I/\

(s—2%) H/ ‘S arif N
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by theorem 4.2 and 2 < d < p

N(s—2%)

q . N(Zd—d) Ch
< oo 4 N
let o9 > 51 + Oy
N(s—d)
q
< o

To estimate the integral over Mm,j(h/Q), by lemma 8.2, we have

2 /zm i(h/Q) (H fland N)) Blradhde =

Q€A 1 ,deg Q<L-+degaqy =1
heA ,deg h<deg @
(h,@Q)=1

> / ( I(arJ,N)) E(—aM)do
deg(a—h/Q)<—degag—dN \; |

Q€A 1 ,deg Q<L-+degaqy i=
heA ,deg h<deg @
(h,@Q)=1

s
< E / (NUqN/Z) do
QEA {,deg Q<L-+degay SInmaj(h/Q)
heA degh<degQ

(h,Q)=1
by deg(a — h/Q) < —(deg Q@ + degaq+dN — L) and L =cIn N

& Z NSO . qN(s/2—d) . qL—degad
QEA +,deg Q<L+degaq

& NSo+20 N(s/2—d) < qN(57d)
q N

Suppose a = h/Q + B € Mmaj(h/Q). We define

I'(arif,N) = N 7@((2) -E(,Badrz-TdN).
For any 0 < € < 1, by [4], lemma 8.9, we have
1
37 — < C.|Q|7 .
Thus by corollary 2.5, we have
N
(38) I'(arif N) < |QI1/D+.

If deg(a — h/Q) < —degag — dN, then by lemma 8.1, we get
(39) I(arif,N) — I*(arif, N) < N°g"/2,
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Combining (38) and (39), we obtain

s s Ny s—1
[I7(arif,N) =[] I*(arsf, N) < N7g"/? (lQl‘“/d’*f : %) :
=1 =1

Thus, we obtain

>

QEA; deg Q<L+deg ay /deg(a—h/Q)<— degag—dN
h€eA ,deg h<deg Q
(h,Q)=1

S

(H I(arif, N) = [[ T (arif, N)) E(—aM)da
i=1

=1

<« >
QEA deg Q<L-+degay deg(a—h/Q)<— deg ag—dN
h€eA ,deg h<deg @

(h,Q)=1
< N(r+lfsqN(sfd71/2) . qfdega,j Z |Q|1*S;1+(-§*1)E
QeA ,deg Q<L+degay

Ny s—1
Nan/2(|Q|—(1/d)+eq_> dev

since (s —1)/d > 2, may choose 0 < € < 1 such that the summation above
converges

N(s—d)

Nst

q

<

Combining these, we obtain

> /m o (H I{arif, N)) E(—aM)da —

QeA ,deg Q<L+degay i=1
h€eA ,deg h<deg Q
(h,Q)=1

> / (H I*(ari f, N)) E(—aM)do
deg(a—h/Q)<—degagz—dN

QeA 1 ,deg Q<L+degay i=1
h€eA ,deg h<deg @
(h,Q)=1

N(s—d)
N

q

<
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By the definition of I*(ar; f, N), we have

S

I (ar;f, N)) E(—aM)da
1

Z /deg(a—h/Q)<—degad—dN (

QEA  ,deg Q<L+degay i=
h€eA ,deg h<deg Q
(h,Q)=1

Ns

-

QEA |, deg Q<L+degay
h€eA ,deg h<deg Q
(h,Q)=1

[Iwkn.Q)
s F (7))

/ E(Baa(ri + - + ) T™N)E(—BM)dp
deg f<—degag—dN

by sgn(ag) - (r1 + 12 + - -+ + rs) = coefficient of the dN-th term of M

s, [Tw(hrif, Q)
— M Z = E(_W)_

- . NS s
|ad| N Q€EA ,deg Q<L+degay ® (Q)
heA ,deg h<deg @

(h,Q)=1

Since

[[w it Q) .
i=1
> B-"M,
Q€A deg Q>L+degay (I)S(Q) Q
h€eA ,deg h<deg @
(h’vQ):l
< Z (|Q|~MD+€ys (by corollary 2.5 and (37))

QeA ,degQ>L+degay
heA ,deg h<deg @
(h,Q)=1

< Z |Q|lfs/d+se

QEA 1 ,deg Q>L+degay
o0

— Z q(L—l—deg ag+1i)(2—s/d+se)

=1
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may choose suitable 0 < € < 1 such that 2 — s/d + se < —1/(2%¢d)

L+degad

< q* 26d g
by L=oclnN

&« N 2bdg

let 0 > 254 (0 + 1)d and let og > s;

K N,
we have
[Iw(hrif, Q)
i hM s
G(M)_ Z I(I)T E(—?> <K N °L,

QEA,deg Q<L+degaq
heA ,deg h<deg @
(h,Q)=1

This implies

2 /m /) (H et N)> Bl

QeA 1 ,deg Q<L-+degay i=1

heA ,deg h<deg @

(h,Q)=1
N(s—d) N(s—d)
q q
~ L s
ol - v S < T
Therefore, we obtain
qN(sfd) qN(sfd)

The main result of this paper is

Theorem 10.2. Suppose 2 < d < p and
>{2d+1 if 2<d< 11,
~ | 24?(2Ind + Inlnd +2) —4d+2 if d > 11.

Then for any given integer sy > s, we have
N(s—d)

NS

N(s—d)
Not

q q

Gy (M) — B(M) <

where the implied constant depends only on d,s,s1, and q, and S(M) > 0

provided M = s (mod TP —T) ifg=p and d =p — 1.
Proof. 1t follows from theorem 9.6 and theorem 10.1.

O
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11. A THEOREM IN ADDITIVE THEORY OF IRREDUCIBLE POLYNOMIALS

The purpose of this section is to prove theorem 11.8. This theorem is an
analogue of [11], theorem 10, due to Vinogradov. The classical Vinogradov’s
theorem plays a very important role in the additive theory of prime numbers.
Throughout this section, let d be a positive integer satisfying 2 < d < p and
let f(z) € Ko[z] denote a polynomial of degree d with leading coefficient
% satisfying a € A,Q € A, and (a,Q) = 1. Let h € A, the Weyl sum
Sp(f, N) is defined to be

SfN)= Y, B
beA 1, deg b=N,h|b
We recall the Dirichlet’s theorem for A in
Theorem 11.1. Given any o € Ky and positive integer N. There ex-
ist unique monic polynomial Q and polynomial a in A satisfying (Q,a) =
1,deg@ < N, and deg(a — a/Q) < —(deg @ + N + 1).

Proof. See [6]. O
fa=a,T"+ - +a1T+ap+ - € Ky,a; € F,, then we define [a] to be

the polynomial [a] = a, T™ + --- + a1T + ag € A. Let z € A of degree N,
let & € Ko, and set

z2=TN +an TV '+ -+ a1 T + ay,
a—[a=b T " +b gy D 4.
where a;,b; € Fy,l > 1 satisfyingay = 1,b_; # 0 and b; = 0 for 0 > 5 > —[.
Then we have
Resoo (- 2)
— Res((a - [a]) - 2)
0 ifl >N +1,
=<¢by ifl=N+1,
bja—1 +b_y_1a+---+b_nyan—1 +b_ny—1 1IN
Since b_; # 0, we get
Lemma 11.2. We have
2, Blaz) = {gN Z 1_<de—giloég_(c£a—]) [024])N<+N1 |
2€A deg 2=N = =V
Let z € A} and let 7,,,(z) denote the number of solutions of
Z = 2122 Zm4l
with 21,29, -+ ,2zm4+1 € A4, Then we have (cf. [2], p. 43)

(40 > = (Ve

z€A,degz=N
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From this, we have

Lemma 11.3. We have

Y. n@"< NV,
z€A ,degz=N

where the implied constant depends only on n and q.

Proof. We prove this lemma by induction on n. If n = 1, then it follows
from (40). Let us assume that

(41) S ne)r < NN
z€A ,degz=N

Then

Y n= Y > m(2)"!

z€A 4, degz=N ye€A 1, degy<N z€A, ,deg 2=N,y|z

= > 7i(y2)""!

yEA ,degy<N z€A,deg z=N—degy

< Y At Y ae!

yEA 1, degy<N z€A 4 ,deg z=N—degy

by (41)

<Y m)" N —degy)” N
yEA +,degy<N

again by (41)

N
< Ziﬂ*—lqi . (N _ i)znfl—qu—i
i=0
< N2"71qN.
This completes the proof. O

Lemma 11.4. Suppose that oo > 23 — 1. Then

z€Ay ,deg z<N
N72<74(2)

where the implied constant depends only on d and q.
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Proof. By lemma 11.3, we have

N?72 Z Td(z) < Z 7a(2)?
z€Ay ,deg z<N z€Ay ,deg z<N
N72< 14(2)
N
<2 > m@
1=1 2z€A ,deg z=1
N d
93d _
< 222 Ly
=1
< Nrfqu
This completes the proof. ]

Let the iterated difference operator Ag, 4,_,,....a; be as defined in section
4. Then we have

Lemma 11.5. Ifh € A,,degh < N, then

(42) SN[ < g des e ST G (A o, S, N)

a1, .0y €ALh|a;
dega; <N

for all 1 <o <d.

Proof. We prove this lemma by induction on v. If v =1, then

1SL(f, N)|* = 3 E(f(TY +a1) — F(TV + a2))

a1,a2€AR|(TN +a;)
dega; <N

> > BTN +ar+a) - f(TN +a2))

degazs<N degai<N
(TN +az2)  hlaa

= ) > E(Ao, f(TN + a2))

deg a1 <N,h|a1 deg az<N,h|(TN +a2)

= Z Sh(AalfaN)

deg a1 <N,h|a1

as desired. Let us assume that (42) holds for some 1 < v < d. We square
both sides and apply Cauchy’s inequality on the right, using the fact that
there are ¢V polynomials of degree less than N and also using the result
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just proved for v = 1. We obtain

2v+1

‘Sh(faN)

< q(N—deg h)(2v+1 —2y—2) Z Sh(Aav,av_l,---,al f, N)

a1,a2, " 7av€A
hlai,dega; <N

< g(N—deg h)(2v+172v72)q(N,deg h)v Z ERV-NS— N)?

a1,a2, ,0y EA
hlai,deg a; <N

- q(N,deg h)(2vtl—(v+1)-1) Z Sh(Aayirsa a1 f> N).

01,02, ,0y+1 €A
hlai,dega; <N

This completes the proof. ]

Lemma 11.6. Let og,03 > 0 be real numbers and let h € AL satisfy
degh < min{N,o3InN}. Suppose that cln N < deg@ < dN — olnN.
Then, when

o > 2%0g + o3) + 2302
we have

N—degh
q g

| Su(f,N) |K N

where the implied constant depends only on d,oq, 03, and q.

Proof. Taking v = d — 1 in lemma 11.5. Since f is a polynomial of degree
d, we get

a
DNoy i f(2) =dl-arag---ag-1 - = - z+clar,a2, -+ ,aq-1),

Q

where c(aq, a9, -+ ,a4-1) is a polynomial in a1, ag,--- ,a4—1. Therefore

d-ay---aj_1-a-b
S0 (B LN =] Y E( a4 a )\-

beA deg b=N,h|b Q

There are clearly less than d-¢(N—d¢€m)(d=2) (4 —1)-tuples (ay,as, - ,aq_1)
with at least one zero entry. For each of these, the sum on the right above
is gVdee” Since 2 < d < p, by (42) with v =d — 1 and lemma 11.2

(3)  |Su(F N)[* < gV es eI y Vdeg Ot

b
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where

v 5 | 5 E(alma%l'a'bw

a1,02,,064—1€A  beA L ,degb=N,h|b
a;#0,h|a;,deg a; <N

- Yy (el

a1,a2,,a4—1 €A beA,degb=N—degh
a;7#0,deg a; <N—degh

< > Ta—2(sgn(z) " 2)| > E (z 5 b) |

0#£z€A beA,degb=N—degh
deg z<deg h+(d—1)N

It follows from lemma 11.4 and lemma 11.2 that if oo > 23(d=2) _ 1, then we
have

deg h+(d—1)N

q . N—degh

X <% q +
z-a-b
veoox Y B(557)
ZEA beA 4 ,degb=N—degh Q
deg z<deg h+(d—1)N
by (Q,a) =1
dN deg h+(d—1)N b
q Z
<<N0_2 + N%2 max {1’—qdegQ } Z ‘ Z E (?> ‘
z€EA b€A+

degz<degQ degb=N —degh

again by lemma 11.2 (taking o = z/Q) and degh < N

AN deg h+(d—1)N deg Q
q q q N—degh
<<N02+N02max{1’W}'maX{l’qN—Tgh}'q

by degh < o3Iln N and cIn N <deg@ <dN —cln N
<<qd(N—degh)(Nd0'3—0'2 +N02+d03_0).

If we take oo = 2971 (0g + 03) + 23(d=2) _ 1 > 23(d=2) _ 1 then since o >
24(ag + 03) + 23142 we have

X < qd(Nfdegh) . Nfzdflaof@d*lfd)ag‘
Therefore from (43) and o3 > 0, we obtain

| Sh(f, N) |2L171 << q2d71(N_deg h) . N—2d7100—(2d*1_d)0_3

< q2d_1(N—degh) . N—Qd_lao.
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This implies that

N—degh
q g

Noo ’

where the implied constant depends only on d, og, 03, and q. O

| Sh(f,N) K

Let 1 <4 < N —degh, let X; be a set of monic polynomials of degree 17,
and let X/ be a set of monic polynomials of degree N — degh — i. Then we

set
QhX = Z Z h(IIZ

z€X; 2€X]

Lemma 11.7. Suppose that 2 < d < p,00,03,05 > 0, h € A, satisfies
degh < min{N,o3In N}, cInN < deg@Q <dN —oInN and o5In N <i <
N — ogIn N, where o5 > 220y, 06 > (2d + 1)o3 + 22410y + 23241 Then
when o > 2dos + 224+ g 4+ 23(24=1) e have

N—degh
q g

Oy x, K ~Noo

where the implied constant depends only on d, oq, 03,0%5,0¢, and q.

Proof. By Cauchy inequality, we know that

Vsl <d 3| Y B(f(haz)

TeX; ZGX’

< ¢ Z‘Z f(hzz))

TEA L ZGX’
deg x=t

DD (hd (o o)+ )

zEAY z1,20€X]
deg z=t

< qi Z |Sz1,22|a

z1,22€A 4
deg zj=N—deg h—i

(44)

where

Serye = Z E(fi(z)),

TEA L
deg z=t

fi(z) = f(hzz1) — f(hazy).
Applying lemma 11.5 for fi(z) with v = d, since

a
a1, adfl( ) = ahd(z‘li — zg)d!al ceag,
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we obtain

53

] a
|SZ1,22|2d < qz(2d7d*1) Z Z E (éhd(zii _ Z(Zi)d'al L ad>

a1, ,ad€A TEA
dega;j<i degxz=i

= qi(zd_d) Z E <ghd(zf —28dlay - - ad> .

Q

ai,,ag€EA
deg a; <i

Therefore

d
Z |821722|2

21€A 4
deg z1=N—deg h—1

(45) .
<D N 3 E <3hd(z;i — 24 dla; --

a1, ,a6gEA Z1€EA ¢
degaj<i degzi=N-—degh—i

By Holder inequality (d > 2), we have

(46)
2d—1
a
S 1Y B - e o)
a1, ,ag€EA z1€A L
dega;<i degzi=N-—degh—t
D S Y 1 e Lo

a1, 00 EA z1€A+
degaj<t degzi=N-—degh—i

Again applying lemma 11.5 for v =d — 1 and

fa(z1) = ghd(zf —2H)dlay - - aqg,

Q

as in the proof of lemma 11.6, we obtain

-ad> .

21171
-ad> 2,

‘ Z E (ghd(z‘f — zg)d!al e ad) ‘Qd_l < q(Nfdeghfi)(Zd—lfd) %

Q

21€A
deg z1=N—deg h—1

Z ‘ Z E <%hd(d!)2a1 ---adwl---wd_1z1> ‘

Wi, we—1€A 31€A+
degwj<N—degh—i degzi=N-—degh—i
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Combining this inequality with (46), we obtain

(47)
2d—1
adi d dy 71
Z | Z E(ah (1 — 23)dlay -~ ag) |
a1, ,ag€EA z1€A L
dega;j<i degz1=N-—degh—i
Sqid(2d_171)q(N7deg h—i)(2¢=1 —d) Z
a1, ,aq€EA
deg a; <i
a
Z ‘ Z E (ahd(d!)Qal ceeqgwy - wd_lzl> ‘

wh"':wd—leA Z1€A+
degwj<N—degh—i degzi1=N-—degh—i

The sum of the terms in this sum satisfying a; - - aqwi - --wg_1 =0 is

id(27-1-1) (N —deg h—i)(d—1)

(N—deg h—i)(2¢"1—d) qid‘ %

<q q

1 1 N—degh—i
(48) (E + qN—degh—i> 4 e

<<qid2d_1q(]\77deg h—i)24=1 (N7(75 + N0'370'6).

q

Since

deg(hdal"'adwl"'wd—l) <Z+degh+(d—1)Nd:efd0’

we have

> )

ap, - 7adeA7aj #0 wy,- 7wd—leA7wj¢0

dega;<i deg w; <N —degh—i
a
‘ Z E (ahd(d!)2a1---adw1 ---wd_lzl> ‘
21€A+

deg z1=N—deg h—1t

< Y maa)| ) E(g;%ZQH

z€A 4 ,deg 2<dp 21€EA L
deg z1=N—deg h—1
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By lemma 11.4 and lemma 11.2 (removing (d!)?), if oo > 23(24=1) — 1, then
we have

do
q — —1 a-zZ-+z
X <<ﬁ _qN degh Z+NU2 Z ‘ Z E(Tl)‘
deg z<dp z1€A,degz1=N—degh—i
by (Q,a) =1
dN do
q q Z 21
<<N02+N02max{1,qdem} Z ‘ Z E( 0 )‘

deg z<deg Q 21€EA L
deg z1=N—degh—1

again by lemma 11.2

dN g gles @
g
+ N?2 max {1, —qdegQ} - max {1, 7qN7degh7i

q
No>

by degh < o3InN,cln N <deg@Q <dN —clnN,and s < N —ogln N

<

} . qN—deg h—i

<<qd(N—degh)(Nd0'3—0'2 +NUQ-}-dO’3—O’ +NU2+(d+1)U3_06).

Combining this with (47) and (48), we get

2d—1

DY E(%hd(zf—z%d!al---ad)\

a1, ,a0EA Z1€A+
dega;<i degzi=N-—degh—i

<<qid2d_1q(N7degh7i)2d_1(Nfa5 + N3 %6 4
Nd0'3—0'2 +N0’2+d0’3—0’ +N02+(d+1)03_06).

Taking
oy = dog + 220 4 23241 _ 1,
Since
o5 > 22d0'0,0'6 > (2d+ 1)0_3 + 22d+10_0 + 23(2(171)
and
o > 2doy + 22 g 4 23241
we obtain
a qid+(Nfdeg h—i)
2 1 2 B -] < g —
a1, ,00EA 21€EA 4

degaj<t degzi=N-—degh—i
By (45), we obtain

124+ (N —deg h—i)

2d q
> (a1 < Ty

2161X+
deg z1=N—deg h—1t
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Using Holder inequality, we obtain

S (Sl <D S g,y

21€A 4 21€A 4
deg z1=N—deg h—1 deg z1=N—deg h—1
qudeg h
< “NZoo
By (44), we obtain
qudegh 2(N—degh)

2 i, N—degh—i q
2x,]" < d g Nooo . S TN

This completes the proof. O
We define

!
S'(fN)= ) E(f(P)),
deg P=N
where 3" denotes the sum over monic irreducible polynomials in A. Then
we have

Theorem 11.8. Let 2 < d < p and let oy > 0 be a real number. Suppose
that o In N < deg@Q < dN — oIlnN. Then, when o > d2%¢(o¢ + 1), we have

N

’ q
|S(f7N) |<< ﬁa

where the implied constant depends only on d,oq, and q.

Proof. Let D be the product of all monic irreducible polynomials P in A
satisfying deg P < N/2, let H be the set of monic divisors of D, and let H
(resp. Hj) the subset of H consisting of h € H satisfying p(h) = 1 (resp.
p(h) = —1), where p is the polynomial mobius function. Let S; be the set
of h € Hy satisfying degh = 1.
We note that
S(N)= >, nW)S(fN).
heH,deg h<N
Let us first estimate the value of
Xo = Z Sh(fa N)a
he€H,degh<Ailn N

where A\; = 2%¢(0y + 1). Taking o3 = ); in lemma 11.6 and substituting
oo + 1 for o(, we obtain

gN-degh
[Sh(f, N)| < oo
Therefore
N—degh N
q q
(49) Xo < > oot < oo

he€H,degh<AiIn N
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Let
Y= > u®)Su(f,N) =Y -V,
heH
A1 In N<deg h<N
where

Yo = Z Sh(faN)a Y1 = Z Sh(faN)

heHy heH;
Arln N<degh<N A1In N<deg h<N

Now we shall confine ourselves to the study of Y, since the same method
can be applied to Y;. Let

he€Hy
A1 ln N<degh<N—XxIn N

= Z Ql,Sia
A InN<i<N-X2ln N
where \y = 22%+1 (0 4 1) + 23(24=1) and Q, g, is defined in lemma 11.7 by
taking S = {r € A |degz =N —i}. f \yInN <i < N — X2InN, then
taking o3 = 0,05 = A1, 06 = A2 in lemma 11.7 and substituting oo + 1 for
09, we obtain

ol
Ql,Si < W-
Therefore
gV
!/
(50) Y < Noo
The part of the sum which remains to be considered is
(51) Yy = > Su(fsN) = > Yo(i),
heHy 0<i<A2In N
N—X2In N<degh<N
where

Yo(i)= Y > E(f(hy)).

yEA L, degy=i h€Sn_;
Let S%_, denote the subset of Sy_; consisting of the polynomials which
have irreducible factors P satisfying deg P > A3In N, where A3 = ¢ + As.
Let S%_, be the set of h € Sy_;, but h & S),_,. Then
(52) Yo (i) = Yy (i) + Y5'(4),
where

IHOE Y > E(f(hy)),

YyEA | degy=i heSy _,;

YW = Y > E(f(hy).

yEA ,degy=i heSy _,
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Estimating Y{' (i), let 0 < i < A\pInN. If h € S¥_;, then degh = N —i >
N/2 for large N (depending on d and oy), h is square free, and deg P <
A3In N for any irreducible factor P of h. Suppose 71(h) = 2%, i.e., s is the
number of monic irreducible factors of h. Then we have N/2 < degh <
sAzIn N. Hence s > N/(2A3In N). This implies that

N
Tl(h) =2% > 270N 3 NAs+L
By lemma 11.3, we obtain

[Sy_INM T < Y n(h) < NgV
heAy ,degh=N—i

where |S%;_.| denotes the cardinality of |[S%_;|. Therefore, by A3 > oo + 1
and trivial estimate, we obtain

" ; N'qN_i qN

N VA

(53) > W< Y ¢ <L
0<i<AzIn N 0<i<AzIn N

Let S%_,(s) denote the subset of S _, whose elements contain exactly s
monic irreducible factors with degree > A\3In N. If h € Sy _,(s) and N > 3,
then since sA\gIn N < N — 1, s < N. Hence

(54) Yo(i) = ) Yo,(0),

s<N

where

Yo (i)=Y > E(f(hy)).

yEA | degy=i he S} _,(s)

—1

In order to estimate Yj ((i), we define

Ziy= 3. 3 S B(f(Pwy)),

— I _
YR o BN in iy "IN imtes P

where > denotes the sum over monic irreducible polynomials in A. Since
0 <7< XInN < A3lnN, we obtain that for each Pvy in the above
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equation, P {y and P2 { v because v is square free. Thus we obtain

’
Zs(i) = sYg, () + Y > >, BUPy)
yEA+,degy:ideg Ifze)glnN PvESY_;_ jeg p(s—1)

Since each element in Sy ; 40, p(s — 1) is square free and i < A3In N, we
get

) J .
=Yy, ()+0|q Y LgN

Asln N<j
¢V
! .
=Yy (i) + 0(77; : N/\3)'
Therefore
. Zs(4) Vv
/ L
(55) Yy (i) = - +O(3-NA3)'

We apply lemma 11.7 to estimate Z;(i). Let X; denote the set of monic
irreducible polynomials P € H with deg P = j, and let X} = Sy ; (s —1).
Since each irreducible polynomial P in H have deg P < N/2, we obtain
zo= Y Y o
A3In N<G<N/2y€A 4 ,degy=i

Now in lemma 11.7 take h = y,03 = X9,05 = A3, and take o to be an
arbitrarily large integer (depending on d and op). Also, substitute og + 2
for og. Then from

degh=degy =i < X2InN =o03InN,
A3ln N < j < N/2 <N —o0glnN( for large N),
05 = A3 = 00 + Ag = 0 + 22 (0 + 1) 4+ 234D > 924 (5 4 9),
o > d2% (o + 1),

we obtain
N—i N

. N , q q
ZS(IL) = Z Z anXj < E q - Noo+2 < Noo+1’
A3 In N<j<N/2ycA degy=i

Combining this with (55), (54), and A3 > 0¢ + 1, we obtain

= Zs(4) g g
! _ S
YO (IL) - = S + O(S . No'g) < Noo+1 -InN.
Therefore
q" q~
, .
(56) > Y0) < joorr N b In N <

0<i<AzIn N
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Combining (51), (52), (53), and (56), we obtain

qN

Noo’

Yy «

This completes the proof. O
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