Correction to Sobolev functions on varifolds

Ulrich Menne

December 9, 2025

Abstract

This note corrects the proof of Theorem 3.6 of Sobolev functions on varifolds in Proc. Lond. Math. Soc. (3), 113(6):725–774, 2016.

Assuming the typographical error in [Men16, Lemma 3.4] to be removed (\mathbf{R}^n on its third line should be U), it cannot be applied in the proof of [Men16, Theorem 3.6] to construct $g: U \to \mathbf{R}^l$ as the domain of the resulting function could fail to contain U. As a remedy, we provide an extended version which reduces to the typographically corrected version of the original when H = U.

Lemma 3.4 (extended version). Suppose $l, n \in \mathcal{P}$, U and H are open subsets of \mathbf{R}^n , $A \subset H \subset U$, the closure of A relative to U is contained in H, $f: H \to \mathbf{R}^l$ is of class 1, and $\varepsilon > 0$.

Then, there exist an open subset X of H and a function $g: U \to \mathbf{R}^l$ of class 1 such that $A \subset X$, f|X = g|X, and

$$\operatorname{Lip} g \leq \varepsilon + \sup \{ \operatorname{Lip}(f|A), \sup \| \operatorname{D} f \| [A] \}.$$

Moreover, if l=1 and $f \geq 0$ then one may require $g \geq 0$.

Proof. We replace U by H in lines 2 and 5 of the original proof.

Theorem 3.6 (unchanged). Suppose $l, m, n \in \mathcal{P}$, $m \leq n$, U is an open subset of \mathbf{R}^n , $V \in \mathbf{RV}_m(U)$, C is a relatively closed subset of U, $f: U \to \mathbf{R}^l$ is locally Lipschitzian, spt $f \subset \text{Int } C$, and $\varepsilon > 0$.

Then there exists $g: U \to \mathbf{R}^l$ of class 1 satisfying

$$\operatorname{spt} g \subset C, \quad \operatorname{Lip} g \leq \varepsilon + \operatorname{Lip} f, \quad \|V\|(U \sim \{x : f(x) = g(x)\}) \leq \varepsilon.$$

Moreover, if l = 1 and $f \ge 0$ then one may require $g \ge 0$.

Proof. We replace the first sentence of the original incorrect proof by "We firstly construct a relatively closed subset D of U such that

spt
$$f \subset \operatorname{Int} D$$
, $D \subset \operatorname{Int} C$, $||V||(\operatorname{Bdry} D) = 0$,

and let X = Int D." and its last sentence by "Choosing an open set W such that

$$(X \sim B) \cup \text{Bdry } D \subset W \subset C \text{ and } \|V\|(W) \leq \varepsilon$$

and recalling $B \subset M \subset G \subset X$, we let $H = G \cup (U \sim D)$ and $A = U \sim W \subset H$,

$$A \cap G \subset B$$
, $(h \circ r)|(A \cap G) = f|(A \cap G)$, $f|(U \sim D) = 0$,

and apply Lemma 3.4 (extended version) with f replaced by $(h \circ r) \cup (f|(U \sim D))$ to obtain a function $g: U \to \mathbf{R}^l$ of class 1 such that

$$g|A = f|A$$
, $\operatorname{Lip} g \le \varepsilon + \operatorname{Lip} f$,

and $g \geq 0$ if l=1 and $f \geq 0$; these conditions entail the conclusion because $U \sim C \subset A \sim D$ and $U \sim A \subset W$."

We are grateful to M. Workman for pointing out the errors corrected above.

Reference

[Men16] Ulrich Menne. Sobolev functions on varifolds. *Proc. Lond. Math. Soc.* (3), 113(6):725-774, 2016. URL: https://doi.org/10.1112/plms/pdw023.

Affiliation

Department of Mathematics National Taiwan Normal University No.88, Sec.4, Tingzhou Rd. Wenshan Dist., TAIPEI CITY 116059 TAIWAN(R. O. C.)

EMAIL ADDRESS

Ulrich.Menne@math.ntnu.edu.tw