
A quick introduction to R

Introduction

This is a short introduction to the R language, meant to be read as a primer to the R course arranged
at CSC. This introduction covers only 10 commands, and 4 notations worth noting. These have been
highlighted with green text when first encountered.

What is R?

R is both a programming language and a statistical environment. Don’t be put off by the eerie sound
of “programming language”. It’s just the way R has been constructed to work. You don’t need to
know much about programming in order to be able to use R effectively.

Where to acquire R?

R has already been installed on the computers in the CSC class room. If you need to install it on
your own computer, you can copy the version on the class room computer, and paste it somewhere
on your own machine. Assuming you are using Windows, that is. You can also download an
installer or source codes from CRAN, the project website at http://www.r-project.org/ .

What are all those packages?

Packages are like computer accessories (joystick, scanner, etc.). They are not always necessary, but
improve the experience or enable one to do things not possible without. Most of R functionality is
scattered around in numerous packages that user can download and install on his own computer.
Some packages come along with the default installation of R, but most of them need to be installed
separately. The best place to study new packages is CRAN.

And Bioconductor – what’s the hassle?

Bioconductor is a project that builds tools for analysis of genomic data, such as gene expression
data. These tools are implemented as R packages. Bioconductor packages are distributed from the
project’s own website at http://www.bioconductor.org/ .

User interface

The R user interface is rather utilitarian, consisting of a few menus and a command line with basic
editing functionality. All the commands used in the analyses are typed to the command line starting
with the sign > (see below). This sign is called prompt, since it prompts the user to write something.

Help

Html-help can be invoked from the Help-menu. From the opening webpage, you can access
manuals, frequently asked questions, references to help for individual packages, and most
importantly, Search Engine. Help is the best place to find out new functions, and get descriptions on
how to use them.

Starting to work with data

The first thing to do is to change to the folder where the data is located. Go to File –menu, and
select Change Dir… Browse to the correct folder, and click OK. Now R is able to see your datafile,
and it can be loaded into R. When quitting R, contents of the R memory (workspace) are saved in
the same folder, if needed.

Basic usage – commands and objects

As already pointed out, all data manipulations and analyses are carried out by typing the relevant
commands. Let’s first load in a datafile. Here, the data to be loaded is in a table (tab-delimited text
file) like this (data from the R Help list):

A B C Resp
1 1 1 34.12
1 1 2 32.45
1 1 3 44.55
1 2 1 20.88
1 2 2 22.32
1 2 3 27.71
2 1 6 38.2
2 1 7 31.62
2 1 8 38.71
2 2 6 18.93
2 2 7 20.57
2 2 8 31.55
3 1 9 40.81
3 1 10 42.23
3 1 11 41.26
3 2 9 28.41
3 2 10 24.07
3 2 11 21.16

Note that every column has a title, those being A, B, C and Resp. To load in this particular file,
type:

> read.table(“Book1.txt”, header=T, sep=”\t”)

Now you should see the table appearing on the screen in the R window. What we just did was read
in the table from the file Book1.txt. This table had column titles (header=T), and was separated
by tabs (sep=”\t”). The R command that did the job was read.table, and the filename, column
titles, and separator were given as arguments to the command.

Note that the command was associated with brackets inside which the arguments were given. All R
commands are like this: they are always coupled with a pair of brackets. If the command tells R
what to do (“Read table!”), arguments tell which table to read, and how it should be read (“Note
that the table is in file Book1.txt, it has column titles, and columns are separated by tabs”).

The table we read in was immediately lost, because we did not save it inside R. In R all the
variables and datasets are stored in memory as objects. To store the table as an object, we should
modify the previous command as follows:

> dat<-read.table(“Book1.txt”, header=T, sep=”\t”)

Using this latter command for reading in the table, the dataset would be saved as an object named
dat inside R. Note the notation “<-“. It literally means that save everything on right side of the
notation to the object that is named on the left side of the notation. When this command is issued
nothing is displayed on the screen. This implies that everything went OK. In contrast to Windows,
R typically only displays a message if something went wrong. We can see the table inside R by just
typing its name to the command line:

> dat

Accessing the data – extracting individual columns or rows from the table

OK, so we’ve got the data into R. Next we want to analyze it. In the case of our example, every
column in the file is a variable. Column resp contains information on the response we have
measured, and the columns A to C contain information on certain treatments. How can we, say,
calculate a mean (arithmetic average) of the response variable?

This can be done by accessing the column by using its name. Remember that the table was stored in
the object called dat. To display the column resp from that object, we can use operator $:

> dat$resp

This syntax might look a bit frightening at first, but it really just means that read the column resp
from the table dat. Note that this is not a command: Commands are always associated with brackets,
so we are just accessing the table.

Mean of a variable is calculated using the function mean(). To calculate the mean of the column
resp in table dat, we put the previous notation inside the brackets of the command mean():

> mean(dat$resp)

And R gives us the answer:

[1] 31.08611

Now we know how to access different columns, but what about rows? If I want to get the 15th row
of the table, how do I do that? Now, that is accomplished using subscripts. Subscripts are slightly
hard to grasp at first, but very handy indeed. To access the 15th row, one would write:

> dat[15,]

That displays only fifteenth row of the table:

 A B C resp
15 3 1 11 41.26

The notation [] after the name of an object is a subscript. Note again that there are no commands
involved, as there are no brackets anywhere. No brackets, no command, and hence we are trying to
access an object.

In a similar fashion, one can actually use subscripts to access columns also. The get the column for
response variable:

> dat[,4]

Note that subscripts are always written [rows, columns]. For example,

> dat[15,4]

will give the fifteenth observation from fourth column. If no column or row is specified that part of
subscript is left empty (but note that the comma is needed).

Doing something more interesting – combining commands and setting up statistical models

Let’s see if the treatments A and B have any effect on the response variable. This can be
accomplished using a two-way ANOVA. The command that does the analysis is aov(). Inside the
brackets we must type the formula of the test:

> a1<-aov(dat$resp~dat$A+dat$B)

This means that run a linear model where the values of response variable are modeled using
variables A and B (and only their main effects). That’s the formula inside the brackets. The results
of this run are stored in an object a1. To get the final results, another command is needed:

> summary(a1)

That gives the results of the analysis:

 Df Sum Sq Mean Sq F value Pr(>F)
dat$B 1 915.21 915.21 46.8213 5.576e-06 ***
dat$A 1 21.09 21.09 1.0792 0.3153
Residuals 15 293.20 19.55

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As the generated table indicates, the main effect of treatment B is statistically significant, but the
main effect of A isn’t.

The two distinct steps above could have been combined:

> summary(aov(dat$resp~dat$A+dat$B))

Note that there are now two commands that are combined, as there are two pairs of brackets. The
first pair of brackets goes with the command summary(), and the second pair with the command
aov(). Brackets are always interpreted from the inside to the outside, meaning in this case that aov(
) is executed first, and it’s results are given to summary() that is executed second.

Looking at ANOVA in more details – loading libraries

The analysis run above was done using something called type I sums of squares. If you’ve never
heard of the whole concept, never mind, that’s just one method of calculating the statistical
significance of the variables in the ANOVA model. We are now going to run the analysis again, but
using another type of sums of squares (type III). The function with type III sums of squares is
available in the library car. This library is installed in R, but not yet initialized (loaded in memory).
Before being able to use this library it needs to be loaded into memory:

> library(car)

To get the type III sums of squares, the summary() command is replaced by Anova():

> Anova(aov(dat$resp~dat$A+dat$B), type="III")

Response: dat$resp
 Sum Sq Df F value Pr(>F)
(Intercept) 2792.97 1 142.8864 4.558e-09 ***
dat$B 915.21 1 46.8213 5.576e-06 ***
dat$A 21.09 1 1.0792 0.3153
Residuals 293.20 15

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If you compare the results given by type I and type III sums of squares, they do not differ, which is
very nice, since they really shouldn’t, because the experimental setup is orthogonal (explanatory
variables are selected in such a way that they do not correlate with each other).

Dealing with objects in memory

After working for a while one might get slightly confused as to what objects there are in R memory.
Object names can be listed using the command objects(). It really only lists all the names of the
objects in current R memory:

> objects()
[1] "a1" "a2" "dat"

The command mentioned above is not always very helpful, since it might be interesting to know
what type of an object the specific object is. There are a few commands that can help in assessing
the type of an object. First, typing the name of an object usually prints the contents of an object to
the screen:

> a1

Call:
 aov(formula = dat$resp ~ dat$A * dat$B)

Terms:
 dat$A dat$B dat$A:dat$B Residuals
Sum of Squares 21.0940 915.2068 9.1002 284.1018
Deg. of Freedom 1 1 1 14

Residual standard error: 4.504774
Estimated effects may be unbalanced

It is often possible to decipher the contents of an object from this information.

It is also possible to study the class of an object. For example, class of the object dat is data.frame.
In layman terms it means that the object is a table.

> class(a1)
[1] "aov" "lm"

> class(dat)
[1] "data.frame"

One can also study the innards of an object in much more details using the command str(). It prints
a description of the object’s structure to the screen:

> str(dat)

'data.frame': 18 obs. of 4 variables:
 $ A : int 1 1 1 1 1 1 2 2 2 2 ...
 $ B : int 1 1 1 2 2 2 1 1 1 2 ...
 $ C : int 1 2 3 1 2 3 6 7 8 6 ...
 $ resp: num 34.1 32.5 44.5 20.9 22.3 ...

In this case, str() tells us, that dat is a data frame with 18 observations (rows) and 4 variables. The
next lines list the variables (A, B, C, resp), and a few of the first observations of every variable. The
dollar sign ($) in front of every line describing a variable just reminds as about the fact that these
variables can be accessed using dat$A -type of notation.

One can always get the column names of a table using the command str(), but there are two easier
commands, colnames() and rownames() that list the column names and row names of a data frame,
respectively.

Writing data to a disk

A data frame can be easily written to a file using the command write.table(). This command only
works for data in a table format (for instance, as a data frame). If needed, we could write the table
contained in the object dat to a files dat.txt as follows:

write.table(x=dat, file=”dat.txt”)

The same would not work with the object a1, since it is not a data frame. The best option is to save
the whole R workspace (everything in R memory) to disk. Actually, this is what R automatically
does, when the user quits the programs (see the next section).

Quitting R

R can be closed with the command q(). After issuing the quit command, R asks whether to save the
workspace or not:

It is usually a good idea to save the workspace, since this creates a special file that can be directly
read into R, and one can commence working with the same datasets and results already generated
without a need to start from the scratch again.

Saved workspace is in a file called .RData, and all the commands given during the same R session
are saved in a file called .Rhistory. To load the workspace into R again, one can simply double-click
on the file .Rdata, and R should open automatically with all the data and results loaded. Note
however that libraries are not loaded automatically, and these should be loaded (if needed) before
commencing the work.

