Statistical Method (I) 統計方法 (I)
Instructor:
Pi-Wen Tsai 蔡碧紋 |
Office: M 205 |
Phone: 7734-6615
|
Email: pwtsai@math.ntnu.edu.tw |
|
最新消息:
學期成績:(已移除) final.html
請列印
ch9.pdf 12/22 去 M411 上課
1/5, 1/12,
1/13 報告 請準備投影片 (儘量為 pdf 檔)
每人約 15 分
作業
HW
|
|
|
R.
|
1(ch2+ch3)
|
ch2 |
4,17,22,25
|
ch2.r
ch2.pdf
|
|
ch3
|
5,6,21,22,33
|
ch3.R
ch3.pdf
ch301.pdf
|
|
|
|
hw1.r
|
2
|
ch4
|
4, 17, 18
|
ch4.R
ch4.pdf
|
|
ch5
|
modified
2(pdf), 12, 13
|
ch5.pdf
ch5.R
|
|
|
資料檔4.18的資料有錯誤,請修正x1第二行的-1為 1
ex4-18.txt
|
ex-5-1.csv,
ex-5-2.csv,
blood.txt
|
3
|
Ch6
|
3, 10, 16 (data: tb15.txt)
read.table("tb15.txt", header=T, sep="\t")
|
ch6.pdf
ch6.R
|
|
ch7
|
11, 14, 19, 20
|
ch7.pdf
|
4
|
ch8
|
13, 14
|
ch8.pdf
ch8.R
tool.txt
|
|
ch9
|
7, 21, 22, 23.
|
wine.pdf wine.R (model
checking)
|
|
|
|
ch9.pdf
ch9.R
ex-9-1.txt |
|
|
|
cv_boot.pdf
cv_boot.R
|
課程目標:
統計的應用不勝枚舉,只要牽涉到資料的蒐集、整理與分析,就
必須有統計的基礎,才能得到合理的結果。
本課程以統計學為基礎,進一步探討統計之理論及應用。目的在於使學生了解統計的應用方向、基本理論與資料分析技
巧。本課程設計給已修過機率與統計學的學生,課程主要範圍包括迴歸模式分析、變異數分析等之理論及應用。
|
關鍵字: 估計及假設檢定、迴歸模式分析、變異數分析
|
先修課程: 機率、統計學、線性代數。 |
Text Books:
D.C.Montgomery, E.A. Peck, and G.G.
Vining. Introduction to Linear
Regression Analysis 4th
edition, John Wiley & Sons, New York, 2007. (歐亞書局代理)
Reference Books:
SimpleR -- Using R for the Introductory
of Statistics.「
直接下載]
Kutner, M. H,
Nachtsheim, C. J., Neter, j. and Li. W
Applied
Linear
Statistical Models 5th ed.(華泰書局代理)
Syllabus:
Regression Analysis:
Quantitative explanatory variables.
- 簡單線性迴歸模式: Simple
linear regression model
- least squares estimation.
- geometry of least squares.
- maximum likelihood estimation.
- analysis of variance, R2, Test for goodness,
lack of fit test.
- 多變量線性迴歸模式: Multiple
regression models
- General linear model
- Additional Sum of squares: ANOVA
- Hypothesis testing
- Goodness of fit test
- Multicollinearity
- 適度性檢定: Accessing model adequacy
- Residual analysis
- Lack of fit test
- Transformations and Weighted LS
- Variance-stabilizing transformations
- Box-Cox transformation
- Generalized and Weighted LS
- 模型診斷: Regression Diagnostics:
- Outliers, leverage and Influence measure
- Indicator Variables:
Qualitative explanatory
variables:
- ANOVA (Analysis of
variance),
- ANCOVA(Analysis of covariance)
- 統計建模: Model building and variable
selection
- All possible regressions
- Automatic methods
- Special topics (time permitting)
- Multicollinearity
- The problem of Corelated errors
- Robust regression
- Generalized Linear models
Evaluation Details:
Assignments:
There will be regular assignments worth 25% of the total mark.
Assignment will require both analytic work, as well as the use of
statistical software.
Exams: The two exams worth 60% of the total mark. They will take
place during
the regularly scheduled class time.
Project: There will be a project worth 15% of the total mark.
The project will
require a written report and a presentation.
可自己分析資料或說明比較已有的文獻分析.
Download R (exe files)
to your own
personal computer.
- Open the Internet Explorer and go to the website http://cran.r-project.org
- Click on the link Windows
(95 and later) in the
top box.
- Click on the link base.
- Click on the link R-2.9.2-win32.exe
You
should save this file to your desktop.
- After the file has
downloaded, double-click on the icon on your desktop and follow the
instructions to install the program.
- The installation
should place a shortcut on your desktop. You simply double-click on the
shortcut to run R.
----
A
platform-independent basic-statistics GUI (graphical user interface)
for R: Rcmdr
A useful
Editor
for R on Windows: Tinn-R.
Source in UCLA: Statistical
computing
R-regessin-reference card: by R. Andersen ref.pdf
Vito Ricci's R regression reference card: ricci.pdf