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Ensemble empirical mode decomposition (EEMD) is a noise-assisted data analysis
method which decomposes a signal into a collection of intrinsic mode functions (IMFs).
There nevertheless appears a multi-mode problem where signals with a similar timescale
are decomposed into different IMF components. A possible solution to this problem is
to recombine the multi-mode IMF components into a proper single mode but as of yet,
no general rules have been proposed in the literature. This paper presents the incor-
poration of a statistical cluster analysis to assist in the diagnosis of multi-mode IMFs
and to recombine them based on the classified clusters. As a result, signals are reorga-
nized into a condensed set of clustered intrinsic mode functions (CIMFs). The method
is applied to two sets of artificially synthesized signals and two sets of practical signals:
wind turbine noise and earthquake motion. These applications demonstrate that, with
the additional cluster analysis, the multi-mode problem can be largely eliminated in a
statistically reliable manner, and in situ applications can be improved.

Keywords: Cluster analysis; clustered intrinsic mode function; cluster linkage;
multi-mode.

1. Introduction

Ensemble mode decomposition (EMD) is an adaptive time-frequency data analy-
sis method which decomposes time series or signals into a collection of intrinsic
mode functions (IMFs) [Huang et al. (1998)]. This decomposition is based on the
local characteristic timescale of the signal, which makes EMD applicable for ana-
lyzing nonlinear and nonstationary signals. It has been applied with great success
in a broad range of applications, such as biological and medical sciences, geology,
astronomy, engineering, and others, e.g. Huang et al. [1998], Echeverria et al. [2001],
Yu et al. [2005], Wu et al. [2007]. Despite these successful applications, the major
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drawback of EMD is found to be the mode mixing phenomena, wherein a single
decomposed IMF may consist of signals of significantly different scales, and these
mode mixed IMFs may contain mixed signal sources with mixed time scales, which
hinder the interpretation of analysis.

To minimize the mode mixing problem, a noise-assisted data analysis method
was proposed, the ensemble empirical mode decomposition (EEMD) [Wu and Huang
(2009)]. The EEMD defines IMF components as the mean IMFs of ensemble trials of
the original signals. Each ensemble trial is obtained by adding a set of white noise
signals at a specified magnitude and, through this ensemble procedure, parasitic
mode mixing of intermittent signals is largely removed; see for example applica-
tions in Chang et al. [2010], Yeh et al. [2010], Lei et al. [2011], Huang and Xu [2011]
and Mhamdi et al. [2011]. As noted in Wu and Huang [2009] and Balocchi et al.
[2003], however, EEMD usually accompanies multi-mode problems where signals
with similar scales appear in different IMFs and causes an over-complete decompo-
sition. When using EEMD to study the seismic signals of the Chi-Chi earthquake
(Taiwan, 1999), coupled with the Tsaoling landslide motion, see e.g. Sec. 4.3, we
find that the multi-mode renders the analysis somewhat inconclusive. To highlight
the multi-mode phenomena, we use a synthesized signal with intermittent wave
packets with the EEMD method in Sec. 2.

As addressed in Wu and Huang [2009], a possible solution to the multi-mode
phenomena is to combine the multi-mode IMFs into a proper single mode, but to
the authors’ limited knowledge, no general guidelines have been established to date.
In the present paper, we propose to incorporate statistical cluster analysis to diag-
nose the multi-mode IMFs and to group them according to the classified clusters.
In the cluster analysis, correlation coefficients are used to measure the “closeness”
among the IMFs and a hierarchical clustering technique, the dendrogram, is used
to present the clues for a supervised decision for combing the IMFs. The result is
that a condensed set of clustered IMFs (CIMFs), with minimized multi-modes, is
formed. The details of the procedure will be described in Sec. 3.

Finally, we demonstrate with three application examples in Sec. 4 and recapitu-
late the findings in concluding remarks in Sec. 5 to show that robust results can be
achieved with this additional supervised cluster analysis. These examples include
one sophisticated artificial signal, wind turbine noise and an abbreviated analysis of
the co-seismic ground motion of the Tsaoling landslide in the Chi-Chi earthquake.

2. EEMD and Multi-Mode

In this section, we briefly describe the EMD technique; its successor, EEMD; and the
multi-mode phenomena by using a synthesized signal sequence. The EMD technique
is a procedure through which a signal sequence x(t) is decomposed into a set, or a
hierarchy, of IMFs, ci(t). The decomposition reads:

x(t) =
n∑

i=1

ci(t) + rn(t), (1)
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where n is the total number of IMFs and rn(t) is the nth residue, called a trend. The
procedure is a sifting process that begins by defining a transient mean of the signal
and continues by extracting the offset signal from the mean to form IMFs. The
transient mean is the average of a pair of bounding envelopes of the signal, wherein
the bounding envelopes are spline curves of local extrema of the signal. A variety
of spline or interpolation methods can be applied for obtaining the signal envelopes
and this procedure is executed iteratively for the hierarchy of the n IMFs. To avoid
a digression, we recommend that for further details, readers please refer to Huang
et al. [1998].

When the sifting procedure stops, the set of n IMFs forms. These IMFs are
sorted ascendantly according to the timescale of the IMFs. The IMFs have the
following property: (i) their number of extrema and zero-crossings either are equal
or differ at most by one, (ii) the mean values of their bounding envelopes are zero,
and (iii) they are nearly orthogonal. The residue rn, on the other hand, becomes
a constant, a monotonic function, or a function that contains only one extremum
from which no further IMFs can be extracted. In practice, the number of IMFs, n,
is often determined by the length of the data, N , and Wu et al. [2007] suggest that
n is about log2 N .

As mentioned in the introduction and existing literature, since EMD some-
times encounters a mode mixing problem and hence EEMD is proposed, [Huang
et al. (1998)]. In EEMD, an additional ensemble average with the assistance of
white noise is incorporated. The white noise contains a broad range of timescales,
which helps separations of mode-mixed intermittent signal packets in EMD. This
additional ensemble procedure is also an iterative process. In each iteration, an
ensemble of the signal is prepared by adding the original signal with a white
noise sequence at a prescribed root-mean-square (rms) amplitude. EMD is then
applied on the ensemble to extract its IMFs. Finally, the EEMD is obtained by
taking averages of the ensemble IMFs over a desired number of ensembles. To
eliminate bias, a sufficiently large number is chosen for the number of ensem-
bles, usually 30. Wu and Huang [2004] and Flandrin et al. [2004] point out that
EEMD has the effect of a dyadic filter bank, and the filter bank is adaptive to
the characteristics of the signal. With the ensemble averaging, the new IMFs
of EEMD no longer satisfy the properties of the EMD IMFs. Especially, the
relaxation from orthogonality enables the cluster analysis described in the next
section.

Under some circumstances, EEMD encounters multi-mode phenomena. These
phenomena are seen as the multiple number of decomposed IMFs with similar
timescales. To exaggerate them, we illustrate the EEMD analysis of a synthesized
signal with intermittent wave packets. The synthesized signal is defined as

x(t) =




sin(t) + 0.1 cos(10t), t ∈
[
(2i − 1)

2
π ± π

5

]
, i ∈ Z,

sin(t), otherwise.
(2)
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Fig. 1. Synthesized signal, (2).

which contains a fundamental harmonic sine wave at a unit amplitude and period
2π. The intermittent wave packets are generated by a cosine wave at amplitude 0.1
and period π/5, and they ride on the crests of the sine wave. The signal, discretized
at a sampling frequency of 100 per unit time, is plotted in Fig. 1.

The signal is decomposed with EEMD by using the benchmark Matlab programs
downloadable at the internet website http://rcada.ncu.edu.tw/research1.htm. In the
calculation, the white noise is set at an amplitude of 10% of the rms value of the
signal, and 30 ensembles are used. The decomposed IMFs are sketched in Fig. 2.
With the benchmark program, the signal is decomposed into nine IMFs and one
residue trend. They are sorted from the mode with the shortest timescale to the one
with the longest. The first two modes present similar characteristics to the leading
modes in many other EEMD applications that contain mostly the white noise. Their
randomness can be confirmed by the significance test proposed in Wu and Huang
[2004], as shown by the two modes lying on the margin of white noise in Fig. 3. In
addition to the white noise, the second IMF has outstanding fluctuations at both
starting and ending time instances of each high frequency intermittent wave packet.
These two leading IMFs may collapse into one if the signal is discretized using a
slower sampling rate.

The third and fourth IMFs, IMF3,4, clearly include the intermittent signals.
Though the intermittent signals have a monotonic frequency, they are decomposed
into two IMFs. This phenomenon is referred as the multi-mode problem. The same
phenomenon is also seen in the decomposition of the fundamental harmonic wave,
which is in the fifth and sixth IMFs, IMF5,6. From their amplitudes, the harmonic
components in the original signal are almost equally distributed into the multi-
mode IMF pairs. Because the EEMD has the effect of an adaptive dyadic filter
bank, the multi-mode phenomena may be associated with the overlaps of the fre-
quency response bands of adjacent filters in the filter bank. The last three IMFs and
the residue trend are insignificant low frequency modes because of their small ampli-
tudes and no more than two representative periods in the entire signal duration.

A few methods are proposed to overcome this multi-mode problem. The most
notable alternative is to tune the level of the added white noise and the number
of ensemble trials. With this approach, we report the IMFs of interest (IMF3 to
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Fig. 2. IMFs of the synthesized signal, (2). The white noise of 10% of amplitude of the signal.
Note that the vertical axes are not equally scaled.
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Fig. 3. Significance test of IMFs of the synthesized signal (2). The lower thick solid (upper
dotted) line represents the upper bound of Gaussian noise at a 95% (99%) confidence level.
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Fig. 4. IMF3 to IMF8 of the synthesized signal (2) with (a) 20% and (b) 30% level of white
noise.

IMF6) with a noise levels 20% and 30% in Fig. 4. Significant improvements can be
found for the intermittent wave packets, which are concentrated into IMF4 in both
cases. The side effects are that two IMFs with random waves replace IMF3 and
IMF5. Because the noise levels are not comparable to the fundamental wave and
the signal duration is limited, the EEMD does not resolve the multi-modes IMF6

and IMF7.
The other alternative is to recombine IMFs into a single mode. With the knowl-

edge of this synthesized signal, we can combine the two pairs (IMF3,4 and IMF5,6)
into two modes for the fundamental and intermittent waves. However, this prior
information does not usually exist in real applications. A conceptual approach on
utilizing the orthogonal properties of IMFs was mentioned in Wu and Huang [2004],
but guidelines have not been proposed at the time of writing. This concept inspires
the present proposal of incorporation of cluster analysis, which will be described in
the next section.

3. Incorporation of Cluster Analysis

Cluster analysis is a set of statistical methods that is used to identify and classify
objects or variables into groups, called clusters. After the cluster analysis, objects
in the same cluster are statistically similar to each other. There are two common
clustering procedures: hierarchical and nonhierarchical procedures. In hierarchical
clustering, a set of nested clusters is produced, and this set is often displayed with a
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tree-like diagram, called a dendrogram. In dendrograms, the relations among clus-
ters and subclusters can be inspected straightforwardly. In nonhierarchical cluster-
ing, on the other hand, objects are clustered by merging and splitting algorithms.
The fundamentals of cluster analysis can be found in many standard statistics text-
books, such as Hair Jr. et al. [1992].

In the present paper, the hierarchical clustering method begins by treating
each object as a singleton cluster, and then it successively merges clusters until all
points have been merged into a single remaining cluster. This approach is called an
agglomerative clustering algorithm, which clusters objects in a bottom-up manner.
Two distance measures are needed in the clustering procedures: One is to measure
the distance between any pair of objects (or variables), and the other is to mea-
sure the distance between clusters that contain single or multiple objects. We refer
the former as the distance and the latter as the cluster distance or cluster linkage.
These distance measures are the amalgamation rule that is applied to determine if
objects or clusters are sufficiently “similar” to be linked together.

When applied with EEMD, the IMFs are the objects for clustering. We define
the distance between IMFi and IMFj as di,j = 1 − cor(ci, cj), where cor(ci, cj) is
the correlation coefficient between IMF time sequences ci and cj . This distance
measure is chosen because the “closeness” of the oscillatory IMFs is calculated
based on the in-phase components: i.e. the effect of closeness of timescales in the
IMFs is included. If two IMFs contain higher portions of in-phase fluctuations, the
distance between them is smaller. In applications, the EEMD extraction process
is performed by repetitively removing transient means from the signals so that
the process does not produce negatively correlated neighboring multi-mode IMFs
under usual circumstances, such that the distance between the multi-mode IMFs
is between 0 and 1. This type of cluster linkage is also used in a variety of subject
fields, such as Bien and Tibshirani [2011].

The cluster distance, on the other hand, has various definitions according to
different linkage criteria. Let us denote the cluster distance as Dα,β for a clus-
ter pair α and β, and briefly describe two common linkage criteria used in the
present paper. For a cluster pair that may contain multiple IMFs in each clus-
ter, their distance can be defined to be the closest distance or to be the far-
thest distance between the elementary IMFs that join the cluster pair. The first
linkage criterion is called the single linkage, and the second is the complete link-
age. These linkage criteria can be expressed symbolically as Dα,β = min{di,j : i ∈
α, j ∈ β} and Dα,β = max{di,j : i ∈ α, j ∈ β}. There are many other link-
age criteria in the literature, but we shall not elaborate further for the sake of
simplicity.

The agglomerative hierarchical clustering procedure can be executed in the fol-
lowing algorithmic steps:

(i) Treat each IMF as an individual cluster and assign an initial cluster as cluster
α for iteration (excluding the insignificant residue trend),

1350005-7

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
20

13
.0

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 T
A

IW
A

N
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 18, 2013 11:39 WSPC/1793-5369 244-AADA 1350005

C.-Y. Kuo, S.-K. Wei & P.-W. Tsai

(ii) Compute the cluster distance Dα,β by exhausting cluster β in the rest cluster
population and find the cluster pair (α, β) in which Dα,β is minimum,

(iii) Amalgamate the clusters α, β, into a new cluster and re-index the new cluster
as α,

(iv) Repeat steps (ii) and (iii) until all of the clusters are in the hierarchy of clusters,
and

(v) Inspect the resultant representative dendrogram of the cluster hierarchy and
draw a clustering level to regroup the member IMFs (supervised clustering).

Note that when the dendrogram representation of the cluster hierarchy is obtained
at the end of the algorithm, a subjective inspection for the multi-mode IMFs is
performed. Terminologically, it is a supervised clustering. We do not particularly
emphasize the performance efficiency in the cluster algorithm because the number
of IMFs is moderate.

The full procedure is illustrated using signal (2) and the IMFs in Fig. 2. The
complete linkage strategy is applied for this example, and Fig. 5 presents the den-
drogram of the cluster analysis. In dendrograms, attention is paid to the positions of
the joints, called nodes, connecting the IMFs and clusters. In the figure, the joints
are the horizontal line segments, and their vertical positions indicate the cluster
distance between the connected sibling clusters. The vertical scale is plotted for the
reference of the supervised inspection.

It is clearly seen from the small distances that there are three multi-mode pairs
of IMFs: (IMF3, IMF4), (IMF5, IMF6) and (IMF8, IMF9). The small distance
between the clustered IMFs implies that the correlation coefficients in the pairs are
higher than 0.5. A gap region is found between 0.3 and 0.8, and a straightforward
selection of the clustering level is to choose a level in this gap. By doing so, we can
cluster the IMFs into six clustered IMFs, illustrated as the six light-grey shaded
blocks in Fig. 5.

IMF1 IMF2

IMF8 IMF9

IMF7 IMF5 IMF6
IMF4

CIMF2CIMF3CIMF4

CIMF1

0.2

1.0

1.2

1.4
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0.4

0

cl
us

te
r 

di
st

an
ce

0.6

IMF3

Fig. 5. Dendrogram with complete linkage of the synthesized signal (2). The vertical axis is the
scale for the cluster distance. The horizontal appearance order of IMFs is irrelevant in the cluster
analysis.

1350005-8

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
20

13
.0

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 T
A

IW
A

N
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 18, 2013 11:39 WSPC/1793-5369 244-AADA 1350005

Ensemble Empirical Mode Decomposition

The supervised approach allows us for a slightly more aggressive clustering
strategy to further reduce the complexity of the IMF set. This aggressive strategy
involves increasing the clustering level close to distance 1. This means clustering
noncorrelated IMFs, so special cautions are needed. The cautions involve inspect-
ing the inter-relations between the IMFs and clusters and the IMF properties: e.g.
timescales and amplitudes. From the dendrogram, the next clustering is to combine
IMF7 into (IMF5, IMF6), and it is acceptable because IMF7 has a small amplitude
at a neighboring timescale (Fig. 2) and a relatively insignificant signal (Fig. 3) to
the merged pair. Finally, even though the distance is almost 1, IMF1 and IMF2

actually arise from the white noise of the ensemble average process, and they can
be safely discarded or, as done here, regrouped for illustration.

After the supervised clustering, the resultant clustering strategy is shown by
the clusters outlined with the bold dash-dot lines in Fig. 5. There are four clusters.
The IMFs in each cluster are summed up and a set of clustered IMFs, now called
CIMFs, is formed. These CIMFs are plotted in Fig. 6. The intermittent signals are
unambiguously clustered into CIMF2, while the main harmonic signal is clustered
into CIMF3. CIMF1 retains the characteristics of white noise, and CIMF4 is the
negligible mode of long timescale caused by the end effects of the original signal.
Although there is a subjective supervised procedure, the cluster analysis provides
a deterministic clue to iteratively combine the multi-mode IMFs.

The aforementioned complete analysis is repetitively elaborated to verify the
algorithmic robustness for a range of signal sampling, ensembling parameters and
the effect of cluster analysis linkage types. The parameter adjustments include
varying the noise level and number of ensemble trials of EEMD, resampling the
original signal to different sampling rates, etc. It is found that their effects are at
most relocations of the joint positions (levels) in the dendrograms or, sometimes,

−0.1

0

0.1
CIMF1

−0.2

0

0.2
CIMF2

−2

0

2
CIMF3

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
x 10−4CIMF4

time

Fig. 6. CIMFs of the synthesized signal (2).

1350005-9

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
20

13
.0

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 T
A

IW
A

N
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 18, 2013 11:39 WSPC/1793-5369 244-AADA 1350005

C.-Y. Kuo, S.-K. Wei & P.-W. Tsai

the hierarchical relation among the insignificant high IMF modes. In conclusion,
the cluster analysis is robust for resolving the multi-mode EEMD phenomena.

4. Applications

The method is applied to three sets of different data. The first is a synthesized
signal and the others are applications to two sets of practical data: wind turbine
noise and an earthquake signal.

4.1. Synthesized signal with three components

The synthesized signal in this example is composed of two harmonic sine waves and
a set of high frequency intermittent wave packets. The signal reads

x(t) =




sin(t) + 0.1 sin(10t) + 0.1 cos(40t), t ∈
[
(2i − 1)

2
π ± π

5

]
, i ∈ Z,

sin(t) + 0.1 sin(10t), otherwise
(3)

and is plotted in Fig. 7. The signal is decomposed by EEMD with a white noise
level at 10% of the rms values of the signal for 30 ensemble trials. Figure 8 shows
the IMFs and the intermittent wave packets are found in the multi-modes IMF2

and IMF3. Similarly, multi-mode pairs are also found in (IMF4, IMF5) and (IMF6,
IMF7) pairs.

The cluster analysis yields a dendrogram sketched in Fig. 9, and following the
same supervised procedures as described in Sec. 3, we finalize the five clusters
indicated in the figure. The CIMFs are plotted in Fig. 10. It is clear that the three
main components of the signal are cleanly clustered in CIMF modes 2 to 4. As
usual, CIMF1 is a random noise of the ensemble average and CIMF5 is the long
timescale trend arising from the end effect.

4.2. Wind turbine signal

Wind power is becoming an important sustainable source of energy. Because of the
interactions between rotating blades and wind flows, wind turbines produce noise

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1
−0.5

0

0.5
1

1.5

time

am
pl

itu
de

Fig. 7. Synthesized signal, (3).
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Fig. 8. IMFs of the synthesized signal (3).

IMF2 IMF3
IMF5IMF4

IMF6 IMF7

0.8

0.6

0.4

0.2
IMF1

IMF8

CIMF4

IMF9

CIMF5

cl
us

te
r 

di
st

an
ce

1.0

CIMF2 CIMF3CIMF1

Fig. 9. Dendrogram with complete linkage of the synthesized signal (3).
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Fig. 10. CIMFs of synthesized signal (3).

radiation. The numbers of articles and reports on the effects of wind turbine noise
on nearby living communities are growing fast [Colby et al. (2009); Pierpont (2009)].
Wind turbine noise is mainly composed of broadband low frequency noise [Wagner
et al. (1996)]. The frequency range starts from an inaudible few Hertz (infrasound)
to a few hundred Hertz. It is argued that low frequency noise may interact with the
human body through mechanical resonances and cause undesirable physiological
and psychological effects.

In addition to the broadband low frequency spectrum, parts of wind turbine
noise have intermittent characteristics because a portion of the noise comes from the
tip-flow interactions modulated with blade passing frequency. This type of signal
has multiple timescales. The tip-flow noise has relatively high frequencies, while
blade passing is at the low frequency end. Under practical operational conditions,
these noises are also affected by the transient wind field, such as unsteady wind
turbulence and gusts. In this example, we demonstrate that the present EEMD
analysis can provide a valuable technique to evaluate these nonstationary effects on
noise radiation.

A pilot measurement was performed at Chunan town, Miaoli County, Taiwan,
on the 17 November 2011. The wind was blowing north or north-east and the wind
ground speed was about 7∼ 8m/s. The wind turbine was a typical horizontal axial
type (HAWT) with three blades. The tower height was 67m, the blade length
was 35m and the power was rated at 2 MW. The rotational speed was slightly
lower than 20 rpm at the time of measurement, which yielded a tip velocity of the
blade of about 70m/s. A 1/2” free field microphone, Brüel and Kjær 4190, was
used. The microphone was positioned 67m north (upwind) of the wind turbine. For
demonstration of the EEMD capabilities, this position was chosen without regard
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Fig. 11. The wind turbine noise. The sampling rate is 1,087Hz.

to the worst direction of noise pollution, or the sound pressure calibration from the
voltage reading of the digital data acquisition.

A 60 s noise signal sampled at 1,087Hz was applied for EEMD analysis. The
original signal is plotted in Fig. 11, in which the multiple time scales of the noise and
the blade passing pulses are clearly seen. This signal is decomposed into 14 IMFs
with a 10% white noise level and 30 ensemble trials. The dendrogram of the IMFs
with the complete linkage criterion is plotted in Fig. 12. In the following discussion,
a slightly aggressive clustering strategy, as shown in the figure, is adopted for a
smaller set of CIMFs for convenience. The clustering level is set slightly less than
1, about the joining level of IMF5,6 and IMF7.

Figure 13 depicts the CIMFs. The significance test indicates that CIMF1 is
a negligible random noise mode. CIMF2 has a maximum frequency content near
20Hz, although it is also a broadband mode. If this noise is excited by turbine
blades cutting through turbulent eddies, the eddy size is estimated to be on the
order of a few meters based on the blade tip velocity. The agreement of this size
with the blade chord length implies that the speculation is reasonable. CIMF3 and
CIMF4 obviously contain the blade passing noise, roughly at 60 rpm (three blades at
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Fig. 12. Dendrogram with complete linkage of the wind turbine noise.
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Fig. 13. CIMFs of the wind turbine noise.

20 rpm). A close inspection on the wave forms reveals more details, a brief overview
of which will be provided in the next paragraph. CIMF5 has a long fluctuation
period of about 10 s, despite some distortion. Assuming the wind speed is 10m/s,
fluctuations at this period have length scales about the order of one hundred meters.
Such length scales correspond to a flow eddy size about the diameter of the windex
turbine. CIMF6 has an extremely long period that is comparable to the entire signal
duration; hence, it may contain signal-end effects, and no conclusion on its sources
can be drawn.

From their amplitudes, CIMF3 and CIMF4 have the largest portion of spectral
energy and they show fluctuations and signal spikes at the blade passing frequency.
For closer inspection, both of the CIMFs between 0 and 6 s are plotted in Fig. 14,
with an equal vertical scale. CIMF2 is also superposed in the figure for comparison.
Cross-examining the cluster distance between CIMF3 and CIMF4, we find that they
are negatively correlated, and from the figure, these two modes present two distinc-
tive characteristics: CIMF3 has discrete sharp peaks between each blade passing and
has maximum peak spikes at instances slightly retarded after the maxima of CIMF4.
The sound sources of these peaks are clearly the blade tip vortex sound which makes
the “swish” noise that observers hear near wind turbines. Because the sound gen-
erating mechanism is localized at the blade tip, the sound becomes prodominant
only when the blade passes a particular position relative to the observer. CIMF4,
on the other hand, is a smooth fluctuation that produces an infra-sound at about
1 Hz. In each oscillation period, it has a steeper ascending rate than the descending
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Fig. 14. Close view of CIMF2, CIMF3 and CIMF4.

rate, which signifies the Doppler frequency shift of the blade rotation. CIMF2 shows
no correlation to the other two modes. Further quantification of the wind turbine
noise is beyond the scope of the present paper and will be reported in a designated
article.

4.3. A seismic signal from station CHY080 at Chi-Chi

On the 21th September 1999, the Chi-Chi earthquake in Taiwan triggered a major
landslide in the Tsaoling area [Hung (2000); Chang and Taboada (2009)]. The
detached landslide mass had a volume about 125×106 m3. A strong seismic station,
code-named CHY080, recorded the ground acceleration during the earthquake and
the landslide. CHY080 is located about 200m from the north-east boundary of the
scar area and its projection onto the NE-SW profile is shown in Fig. 15. The NE–
SW (north-east to south-west) profile, the solid thick black line in the inset figure,
is in parallel to the slide direction.

The acceleration have three vectoral components: the EW, NS, and vertical
components. In this application, we are particularly interested in a burst of high

Fig. 15. Geological profile of the Tsaoling area. The inset figure depicts the surrounding area
of the landslide site. The NE-SW profile is defined through the gravity center of the slid mass
and is parallel to the slide direction. Geological formation: SL = Shihliufeng shale; TW= Tawo
sandstone; CS =Chinshui shale; CL =Cholan formation; Dp= debris deposit.
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Fig. 16. EW ground acceleration component of the CHY080 seismic record. (a) Full record, p-
wave arrives at 20 s and s-wave arrives at 25.2 s. (b) Excerpted signal section between 70 and 85 s,
the highlighted signal section in (a). The signal is conditioned for instrumental errors and low-pass
filtered at 20Hz.

frequency which was visually identified around 76 s from the start of the record
and, for brevity, only the EW component is addressed here. The sampling rate
of the seismic station is 200Hz. For EEMD analysis, the signal is conditioned by
removing the instrumental offset and baseline [Boore (2001); Wu and Chen (2011)],
and then applied with a 20Hz low pass FIR filter. The full and excerpted EW
signals (conditioned) are plotted in Fig. 16. With the usual 10% noise level and 30
ensemble trials, the EEMD of the excerpted signal yields 9 IMFs.

After a complete linkage cluster analysis, the dendrogram of the IMFs is sketched
in Fig. 17. Based on the supervised procedure described in Sec. 3 and the timescales
of IMFs, we set the clustering level between 0.7 and 0.9, which leads to five CIMFs.
These CIMFs are plotted in Fig. 18. It is confirmed by the significance test that
CIMF1 is a negligible ensemble averaged random noise. CIMF3 and CIMF4 contain
more than 81% of the total spectral energy of the acceleration signal and are the
main earthquake components. Awaiting further investigation is whether any mech-
anisms divide the main earthquake signal into two CIMFs with distinctive time
scales. CIMF5 absorbs the end effects of the sectioned signal and is insignificant to
the ground motion.

The striking finding in the clustered IMFs is the localized wave packets in
CIMF1. In addition, similar localized wave packets are also found in the other
two acceleration components. The timescale of these wave packets is much shorter
than that of the ambient ground motion. From the high frequency contents, these
wave packets are likely caused by the coseismic near-field landslide motion. Using
numerical simulations, Kuo et al. [2009] found that the emerging instance of the
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Fig. 17. Dendrogram of EEMD cluster analysis of the CHY080 seismic signal (EW component).
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Fig. 18. CIMFs of the CHY080 seismic signal (EW component). The vertical axes are not equally
scaled.

wave packets coincides with the instance of the landslide flow impacting the deposit
river valley. It is further verified in Chang et al. [2012] that the magnitude of the
wave packets is found to be consistent with that of the corresponding energy release
of the landslide impact. For illustration purposes of the modified EEMD, we do not
proceed any further but conclude here with the encouraging finding of the impact
signal. In summary, although it is a preliminary application and there is in a great
lack of details, the single linkage criterion was actually used in the last citation
[Chang et al. (2012)] to which the interested readers are referred for extra verifica-
tion of the robustness of the cluster analysis.

5. Concluding Remarks

In this paper, we present the incorporation of supervised cluster analysis with
EEMD. The additional cluster analysis provides a deterministic method to diagnose
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the multi-mode phenomena of EEMD and a formal approach to cluster the multi-
mode IMFs. An agglomerative hierarchical clustering procedure is applied and the
cluster distance (linkage) is defined on the correlation coefficient between the IMFs
pairs. Dendrograms of IMF hierarchies produced after the analysis provide the
visual clues for the supervised inspection and clustering. The complete procedure
is demonstrated with details using two synthesized and two practical signals. These
applications conclude that the multi-mode problem can be largely eliminated in a
statistically reliable manner and in situ applications can be improved.

Acknowledgments

This work is supported in parts by National Science Council, Taiwan, under grants
NSC-100-2625-M-001-002-MY3 (CYK) and NSC-99-2118-M-003-001-MY2 (SKW,
PWT). The help of Dr. Gwo-Shyang Hwang and Mr. Yun-Peng Wu, National
Taiwan University, in data acquisition of the wind turbine noise is credited.

References

Balocchi, R., Menicucci, D. and Varanini, M. (2003). Empirical mode decomposition to
approach the problem of detecting sources from a reduced number of mixtures, in
Proc. Int. Conf. IEEE EMBS, Cancun, Mexico, pp. 2443–2446.

Bien, J. and Tibshirani, R. (2011). Hierarchical clustering with prototypes via minimax
linkage. J. Am. Stat. Assoc., 106: 1075–1084.

Boore, D. M. (2001). Effect of baseline corrections on displacements and response spectra
for several recordings of the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seis. Soc. Am.,
91: 1199–1211.

Chang, K. J. and Taboada, A. (2009). Discrete element simulation of the Jiufengershan
rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan. J. Geophys.
Res., 114: F03003.

Chang, K. J., Wei, S. K., Chen, R. F., Chan, Y. C., Tsai, P. W. and Kuo, C. Y. (2012).
Empirical modal decomposition of near field seismic signals of Tsaoling landslide,
in Earthquake-Induced Landslides, eds. K. Ugai, H. Yagi and A. Wakai, Int. Symp.
Earthquake-induced landslides, Springer, Kiryu, pp. 421–430.

Chang, Y.-M., Wu, Z., Chang, J. and Huang, N. E. (2010). Model validation based on
ensemble empirical mode decomposition. Adv. Adapt. Data Anal., 2: 415–428.

Colby, W. D., Dobie, R., Leventhall, G., Lipscomb, D. M., McCunney, R. J., Seilo, M. T.
and Søndergaard, B. (2009). Wind Turbine Sound and Health Effects: An Expert Panel
Review, Prepared for American Wind Energy Association and Canadian Wind Energy
Association.

Echeverria, J., Crowe, J., Woolfson, M. and Hayes-Gill, B. (2001). Application of empirical
mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput., 39:
471–479.

Flandrin, P., Rilling, G. and Goncalves, P. (2004). Empirical mode decomposition as a
filter bank. IEEE Signal Process. Lett., 11: 112–114.

Hair, Jr. J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1992). Mutivariate Data
Analysis with Reading. Macmillan Publishing Company.

Huang, D. and Xu, Y. (2011). A new application of ensemble emd ameliorating the error
from insufficient sampling rate. Adv. Adapt. Data Anal., 3: 493–508.

1350005-18

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
20

13
.0

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 T
A

IW
A

N
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

April 18, 2013 11:39 WSPC/1793-5369 244-AADA 1350005

Ensemble Empirical Mode Decomposition

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L., Shih, H. H., Zheng, Q., Yen, N. C.,
Tung, C. C. and Liu, H. H. (1998). The empirical mode decomposition and Hilbert
spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A,
454: 903–995.

Hung, J. J. (2000). Chi-Chi earthquake induced landslides in Taiwan. Earthquake Eng.
Eng. Seismol., 2: 25–33.

Kuo, C. Y., Tai, Y. C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R. F. and Chang,
K. J. (2009). Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equa-
tions over general topography. Eng. Geol., 104: 181–189.

Lei, Y., He, Z. and Zi, Y. (2011). Application of the eemd method to rotor fault diagnosis
of rotating machinery. Mech. Syst. Signal Process., 23: 1327–1338.

Mhamdi, F., Poggi, J.-M. and Jadane, M. (2011). Trend extraction for seasonal time series
using ensemble empirical mode decomposition. Adv. Adapt. Data Anal., 3: 363–383.

Pierpont, N. (2009). Wind Turbine Syndrome: A Report on a Natural Experiment. K-
Selected Books.

Wagner, S., Bareiss, R. and Guidati, G. (1996). Wind Turbine Noise. Springer, Berlin.
Wu, J. H. and Chen, C. H. (2011). Application of dda to simulate characteristics of the

Tsaoling landslide. Comp. Geotech., 38: 741–750.
Wu, Z. and Huang, N. E. (2004). A study of the characteristics of white noise using the

empirical mode decomposition method. Proc. R. Soc. Lond. A, 460: 1597–1611.
Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted

data analysis method. Adv. Adapt. Data Anal., 1: 1–41.
Wu, Z., Huang, N. E., Long, S. R. and Peng, C.-K. (2007). On the trend, detrending, and

variability of nonlinear and nonstationary time series. PNAS, 104: 14889–14894.
Yeh, J.-R., Shieh, J.-S. and Huang, N. E. (2010). Complementary ensemble empirical mode

decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal.,
2: 135–156.

Yu, D., Cheng, J. and Yang, Y. (2005). Application of emd method and Hilbert spectrum
to the fault diagnosis of roller bearings. Mech. Syst. Signal Process., 19: 259–270.

1350005-19

A
dv

. A
da

pt
. D

at
a 

A
na

l. 
20

13
.0

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 T
A

IW
A

N
 N

O
R

M
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.


