羅浮宮:科學與藝術的結晶..........洪萬生01051999
HPM隨筆(三):數學哲學與數學史.....洪萬生06051999
數學千禧年:歷史、文化與教育......洪萬生09051999
「數學千禧年:歷史文化與教育」國際研討會
當嘴角雙唇微開的蒙娜麗莎,向我們展現羅浮宮乃至巴黎所特有的寧靜、典雅氣質時,筆者雙腳的痠疼不覺以減輕了大半。誠然,羅浮宮的優美與高貴,絕對不只是因為它那舉世無雙的藝術收藏品而已,更難得的,恐怕也來自法國人經營巴黎那種既開闊又細緻的格局吧!
正如羅浮宮與巴黎是不可分割的有機整體,它的收藏與建築也是切不開的。羅浮宮位於賽納河右岸與里沃利大街,我們從正門進入,立刻進入眼簾的,便是建築大師貝聿銘設計的三座金字塔。每天的任一時刻,這三座透明的、以現代科技打造的金字塔(一座主塔與兩座副塔),都有如五彩繽紛的五彩畫布一樣,不斷地變換天光與羅浮宮的倒影,真是美得令人不敢逼視。
不過,這種美的極致,應該也來自科學與藝術、古典與現代的結合。一九九五年三月,筆者與香港數學家蕭文強同赴巴黎參加『徐光啟研討會』,投宿賽納河右岸旅館,每天到河左岸拉丁區赴會途經羅浮宮正門廣場時,總喜歡細數宮牆上『罰站』的法國思想家、哲學家、科學家和數學家塑像,遙想他們對科學與藝術人文的狂熱,留下多少不朽的注腳!事實上,法國人不僅熱愛人文、藝術,對科學家、數學家更是推崇備致,譬如位於拉丁區、鼎鼎大名的巴黎高等師範大學門前馬路,即以居禮夫人命名,她與丈夫皮埃的照片,更是榮登法國500法郎鈔票;至於二十一歲因決鬥而去世的天才數學家伽羅瓦(F. Galois),也一再現身法國郵票,可見他們對科學文化遺產的高度重視。
偉大科學家、數學家大都出身庶民階層,這是古今中外皆然的事實,其他思想家、哲學家、文學家和藝術家,大概也是來自平民家庭居多。一個國家對這類人物的敬重,或許可以衡量她的氣度是否雍容與自在。離巴黎高等師大不遠的『先賢祠』(Pantheon),迎面可見斗大銘文
– 『偉人們,祖國感謝你們!』而有幸長眠於斯的,則是盧梭、雨果、左拉和伏爾泰等思想家和文學家,至於所謂的英明帝王和蓋世英雄,則永遠不在入祀之列。筆者深信正是因為這樣的文化空間,所以,當我們從羅浮宮遠眺香榭里大道時,盡收眼底的不僅是宏偉、壯闊,而且是美不勝收的驚歎!一九九五年夏天筆者曾兩度造訪北京天安門廣場,感覺宏偉有之、壯闊有之,但從不曾感動,原因何在,固不辯自明矣!是的,羅浮宮傲世的正是西方科學和藝術的完美結晶。在離開巴黎的前一天下午,筆者從容地進入羅浮宮欣賞名畫『蒙娜麗莎的微笑』時,彷彿看到達文西在他自己的臉部素描上所畫的『黃金矩形』。所謂美,對希臘人、達文西乃至法國人而言,都是指『好的比例』(well-proportioned)。由此看來,羅浮宮的裡裡外外,不都是美的見證嗎?
「數學哲學」(
philosophy of mathematics)當然與「數學史」(history of mathematics)有關!它們的關聯受到矚目,大概可以追朔到七十年代。當時數學哲學家Imre Lakatos追隨Karl Popper,開始注意到被邏輯實證論(logical positivism)所忽略的「發現的脈絡」(context of discovery)對知識成長的重要性,遂將數學史結合到數學哲學的研究之中。此外,Lakatos也十分關心數學教育,他希望數學史融入數學哲學所引出的「擬經驗論」(quasi-empiricism)觀點,最終可以對數學教育作出貢獻。首先,且讓我們就「數學哲學」與「數學史」各自的學術目的來討論。為了達到此一目的,學術研究的對象與方法,就會逐漸地形成它們的獨特性,也因而劃定了該學門的邊界。這種「各自為政」的狀態,當然也成就了各自學門的自主性(
autonomy),從而為各自學門的知識本位(knowledge status / claim)訂下了互異的規範。譬如數學與物理學的邊界十分清楚,所以,「數學真理」(mathematical truth)與「物理真理」(physical truth)當然不同,而區別它們的的方法自然也就容易被凸顯出來了。於是,利用方法論的判準來劃分學門的邊界,就被認為是一種極自然的考慮。譬如說吧,邏輯實證論者,就將非形而上的知識分成經驗的(empirical)與形式的(formal),前者包括了科學(自然的與社會的)與人文學,後者則包括了數學與邏輯。對它們而言,數學與物理學當然不同,因為在「核證的脈絡」(context of justification)中,前者所使用的方法 -- 依據假設的一種演繹過程,就不同於後者之仰賴觀察、實驗等經驗手段。不過,這種分類法則目前已經受到很大的質疑。在數學的知識活動中,或許它的「發生」(genesis)過程所蘊含的動態面向與經驗成分,也會影響它的知識本位,職是之故,擬經驗論者如Lakatos所開出數學知識之經驗關懷,其中企圖含攝數學知識的演化過程(亦即數學史之關懷所在),當然很容易理解了。然而,照傳統的知識分類來說,歷史與哲學畢竟不同。如何面對哲學本體論問題受到它的歷史演化因素的滲透,比方數學物元(
mathematical entities or objects)如函數(function) 的本質,大概是純哲學研究再也無法迴避的問題了。或許這也促成Lakatos改寫康德(I. Kant)並廣被傳頌的一句話:「數學史一旦缺少了哲學的引導,便是盲目的;至於數學哲學,要是對數學史中最引人遐思的現象不理不睬,那麼,它便是空洞的。」(the history of mathematics, lacking the guidance of philosophy has become blind, while the philosophy of mathematics turning its back on the most intriguing phenomena in the history of mathematics, has become empty.)[引自 Ernest 1991, pp. 24-25] 基於這種歷史關懷,我們可以對照數學哲學的傳統問題。嚴格來說,它是傳統知識論(epistemology)的特例,主要關懷下列問題:數學知識的基礎何在?數學真理的本質為何?又是哪些條件刻劃了數學真理?它們的結論之核證又是什麼?數學真理何以是必然的真理(necessary truth)?[Ernest 1991, p. 3] 現在,如果要在數學哲學問題討論中為數學史留下一個位置,那麼,問題意識或許可以指向:(1)數學知識:它的本質,核證與發生(genesis)
(
2)數學物元或對象:它的本質與起源(origin)(
3)數學的應用:它在科學,技術與其他領域中的效用(effectiveness)(
4)數學的實際運作(mathematical practice):數學家的知識活動,包括現在與過去。[Ernest 1991, p. 27]Ernest 利用以上述判準,來映照數學哲學中的學派如邏輯學派,直觀學派,形式學派,柏拉圖主義(Platonism,代表人物如Frege),約定主義(conventionism,代表人物如 Wittgenstein),(樸素)經驗論("naive" empiricism,如Mill)以及擬經驗論,一一檢視它們各自主張及論述的不足[Ernest 1991, pp. 23-24],接著,他針對社會建構主義(social constructivism)作為一種新的數學哲學之可能性,提出深入的討論,尤其著重相關的主觀知識(subjective knowledge)與客觀知識(objective knowledge)之反省。最後,Ernest結合了數學史,數學社會學與數學心理學,提出數學的社會建構主義式之後設理論(social consturctivist meta-theory of mathematics),來取代傳統的數學哲學。[Ernest 1991, pp. 42-108]
關於Ernest (1991)一書中的相關討論,我們希望將來提供專文討論。在此只想指出,不管是擬經驗論也好,社會建構主義也好,乃至於數學的社會建構式之後設理論,都十分強調數學知識的經驗成分,也因此,數學史對這些新的數學哲學主張之論述,乃成為不可或缺。
數學知識活動固然有哲學問題,當然也有歷史問題,它貫穿了知識演化的縱軸。這也就是說,歷史一定跟時間有關,它用一個時間的維度,將這些知識活動填進去。從傳統的知識論觀點來看,數學知識是永恆不變(eternal or timeless)的東西,它在宇宙誕生時也就被創造好擺在那兒,然後就等著我們去發現。因此,如果歷史知識是關於變化(change)的一種學問,那麼,數學史所為何事,就很值得我們推敲了,因為數學知識要是與時間無關,那麼,它的本質自然就沒有歷史問題了。如此一來,數學史的研究,比如研究函數的歷史,首要任務無非是確立函數的定義(definition),以便說服我們自己『它』的確貼近函數(概念)的本質,然後,以此種終極關懷為唯一目的,歷史上凡是朝此一方向前進的數學研究成果,就都是函數史(the history of function)的恰當內容。於是,數學史就變成揭示造物主偉大 -- 因為祂創造了偉大的數學 -- 的一項神聖『理性重建』(rational reconstruction)工程了。從而,數學史研究就淪落成為數學大師造廟的一種學術活動,主要任務莫非是為那些大師的經典作註腳。
當然,從這樣的觀點來看,數學史的研究也算是對數學知識活動的一種意義賦予(sense making)。不過,在這種情況下,「數學」與「數學史」這兩者的知識活動好像沒有太大的差別,它們都是目的論式的揭示(teleological revealation),亦即它們都亦步亦趨地走向造物主所規劃好的最後真理之途徑上。數學史家想要從這樣的先天設限中解放出來,必須面對柏拉圖(Plato)對數學所做的先天設限,然後在學習如何去問恰當的歷史問題。
根據柏拉圖的看法,數學知識是存在於理想世界(ideal world)的一些「形式」(form)或「理念」(idea),譬如三角形就是一個形式,它在吾人的肉體所生存的物質世界(material world)是沒有指涉物或參考物(referent)的,亦即一塊三角形狀的餅乾並不是『三角形』所指涉的物質(referred matter)。基於此一假設,學習當然是一個「再發現」(re-discovery)的過程。說得更明確一點,柏拉圖認為吾人生而有知,學習是一個吾人的靈魂(soul)喚醒或收集(recollect)本有記憶(memory)的過程。柏拉圖曾安排蘇格拉底(Socrates)與米諾(Meno)家一位奴隸男孩的對話,以「求作一個正方形使其面積是已知正方形面積的兩倍」為例,說明未受過教育的男孩可不學而能,至於教師(蘇格拉底)的角色,則只是引導或啟發而已。(參見柏拉圖的對話錄【米諾】(Meno))在此一脈絡中,柏拉圖顯然呼應了蘇格拉底的產婆式教學法,產婆(比喻教師)只是協助產婦(比喻學生)生出嬰兒(知識),她並不是知識的傳送者。
不過,如何喚醒孩童本有的知識,柏拉圖並沒有提供可行的方法。誠然,數學的訓練,無非是協助吾人擺脫物質世界的糾纏,而將靈魂或心靈(mind)(對柏拉圖而言,這兩個名詞通用)提升到理想世界,去把握永恆不變的形式或理念。然而,如何達到此一目的,柏拉圖並沒有提供任何經驗手段。相對地,亞里斯多德就務實多了,他認為吾人經驗可及的一塊三角形餅乾(亦即「物質」)內蘊了三角形的「形式」,因而,吾人心靈通過與三角形餅乾之類的物質之互動,應該有可能領會或理解三角形這一形式或理念的。其實,亞里斯多德也認為三角形這種數學「物元」(mathematical objects)是從三角形餅乾這樣的「物質」抽象而來,對於「物元」與「物質」兩者的關係,他尤其說得極為明白:「當我們考慮數學物元時,我們是將它們看成好像與其物質分離,雖然事實上並非如此。」[引自Heath 1980, p. 11]
上述亞里斯多德的數學認識論,建立在他的本體論假設上。他認為數學知識是介於形上學(meta-physics)[或第一原理(the first principles)]與物質世界(或物理世界,physical world)之間的橋樑,換句話說,數學溝通了柏拉圖的形式與物質。儘管亞里斯多德將數學的本體論地位(ontological status)紓尊降貴了下來,但是數學因而可與吾人經驗結合,也為凡夫俗子可以學習數學打通一條途徑。從這個觀點來看,歐幾里得在【幾何原本】第一冊中為「直線」定義(Definition 4)提供工匠經驗的比喻,意在模仿亞里斯多德的認知方法,殆無疑問。[Heath 1956 vol. 1, p. 153] 迥異於柏拉圖,亞里斯多德重視物理世界及其蘊含的數學知識,大大地強調了數學知識的經驗成分,同時也暗示我們在教育的過程中,學習者主體以經驗手段接觸客體,從而對客體所蘊藏的數學物元有所發明。換言之,對亞里斯多德而言,學習比較像是一個再發明(re-inventing)的過程。這是古希臘數學哲學對於現代數學教育最有貢獻的一個主張,值得我們深入研究。
從上述柏拉圖與 亞里斯多德的對比,可見數學哲學的立場,不只影響數學知識的認知方式,同時此一立場對經驗知識的重視程度,也決定了知識活動的歷史面向之可能性。由此看來,亞里斯多德的觀點,為數學史與數學哲學的結合,預留了比較大的空間。所以,我們必須注意:並不是所有的數學哲學立場都為數學史留下位置!如果一昧地認為數學概念是一種先驗的(先於經驗,a priori)柏拉圖形式(Platonic form),那麼,不只是數學史的研究走不出為數學大師作註腳的窠臼,數學史與數學哲學因結合而互惠的期待,也會完全落空!尤其是今日主導數學史學的社會史取向(socio-historical approach),由於浸潤了數學與社會互動的豐富面貌,也會跟那種狹隘的數學哲學論述,絲毫沒有任何交集。
儘管如此,數學哲學與數學史畢竟是彼此獨立的學門(discipline),它們各自擁有亟待完成的學術目標。而且,它們各自研究成果之深化,也一定會對數學教育研究,帶來深遠的影響與助益。我們固然不能期待數學哲學家對數學史一定深情款款,同理,也不能要求數學史家必須懷抱普適的的哲學思考。如果,數學教育研究者與工作者在選擇了適當的哲學立場之後,發現數學哲學與數學史的結合,是必須優先面對的問題時,那麼,除了親自『下海』去研讀這兩門學問的基本知識之外,大概就別無他途了。
參考文獻
Brown, Harold 1977. Perception, Theory and Commitment: The New Philosophy of Science. Precedent Publishing, Inc.
Ernest, Paul 1991. The Philosophy of Mathematics Education. London: The Falmer Press.
Heath Thomas 1956. The Thirteen Books of Euclid’s Elements. New York: Dover Publishing Co.
Heath, Thomas 1980. Mathematics in Aristotle. New York & London: Carland Publishing, INC.
Hempel, Carl 1966. Philosophy of Science. New Jersey: Prentice-Hall, Inc.
Maziarz, Edward A., Thomas Greenwood 1968. Greek Mathematical Philosophy. New
York: Frederick Ungar
Publishing Co.
Tymoczko, Thomas ed., 1986. New Directions in the Philosophy of Mathematics: An Anthology. Boston: Birkauser, Inc.
在邁入另一個千禧年之際,我們決定接受HPM國際研究群主席Jan van Maanen委託,並且有幸得到國科會的贊助,將於公元2000年8月9-14日舉辦『數學千禧年:歷史、文化與教育』國際研討會。此一研討會的英文名稱為"History in Mathematics Education: Challenges for a new millennium" (簡稱『台北HME』),是時間稍早(公元2000年7月31日-- 8月6日)在日本召開的第九屆國際數學教育會議(ICME-9)之衛星會議。
這種衛星會議的設計早有先例。譬如說吧,1988年的「佛羅倫斯HPM」就是布達佩斯ICME-6的衛星會議,同樣地,1992年的「多倫多HPM」也是緊接著魁北克ICME-7之後舉辦,至於筆者應邀參加的1996年葡萄牙「Braga HEM」,則是西班牙Sevilla的ICME-9的衛星會議。依筆者上次與會的經驗來看,這種研討會設計所以吸引參與者,其原因或許是她(他)們可以就近依序參加ICME與HPM(或甚至於PME)-- 當然,後者的註冊費不能收得太高!同時,也因為ICME的盛會動輒數千人,討論的問題包羅萬象,自是無法深入任一特定主題,所以,以「衛星會議」功能來設計的HPM研討會,恰好可以讓學者專家從容參與,一起來分享HPM研討會所洋溢的數學與文化結合之價值與意義。
『台北HME』當然也不例外。它的目的,完全打算為關懷HPM議題的學者、專家及中小學教師,創造一個彼此可以對話的論壇。在這研討會期間,我們期待每一個與會者都能對數學史如何惠及數學的教學、學習與課程,提出發人深省的研究成果,並帶動廣泛且深刻的討論。
台灣這塊曾是葡萄牙水手眼中的福爾摩莎島,從第十六世紀以來,就不斷地學習適應各種東、西文化的衝突。顯然,它也從這些歷史的插曲中學到不少教訓與智慧。如今,在面向一個新的千禧年的關口,地理位置特殊的台灣成為此一研討會的東道主,為國際數學教育學界提供這樣一個難得的機會,讓大家可以團團圍坐,分享數學知識的交流經驗,讓我們倍感榮幸與壓力。
我們預估屆時會有兩、三百位左右的數學史家、數學教育家與中小學數學教師參與此一盛會。其中來自國外的與會者,約略將有一百位左右。為了讓國內學者與中小學教師充分暴露在國際學術的討論環境中,我們希望至少能催生國內學者五十篇論文發表,為台灣的HPM研究樹立一塊里程碑!
在這同時,我們當然期待亞洲也能建立其他的HPM研究據點。事實上,此次研討會籌備時,HPM兩位前後任主席確有在亞洲鼓動風潮之考慮。於是,除了在國際委員會名單中納入日本的佐佐木力教授(東京帝大科學史研究所)、蕭文強教授(香港大學數學系)以及筆者之外,在五位主題演講者之中,與亞洲數學史、科學史研究有關的就佔了三位 -- 金永植(南韓)、林力娜 (Karine Chemla) 及古克禮(Christopher Cullen)。這種安排對我們或許不無啟發吧!幾年來台灣學術界開始『比較恰當地』面向東南亞,尋求區域合作的價值與意義。如今當我們面對台灣原住民的『民族數學』研究時,尤其感同身受。無論如何,加強多邊合作關係,實在很需要周到與細緻的規畫與作為。上週筆者到新加坡參加第九屆東亞科學史研討會 (The 9th International Conference on the History of Science in East Asia, August 23-27, 1999),難得遇見菲律賓與越南的學者與會,實在非常高興。在當今後殖民時代,台灣的歷史遭遇與處境,有太多的經驗可以跟這些東南亞的國家交流與分享。因此,我們至盼亞洲國家學者都能積極與會,為東西方(甚至南北)的交會,寫下互惠的歷史記錄。
現在,就讓我們對「台北HME」的一些近期資訊貼在下文,供大家參考。我們也至誠歡迎國內學者共襄盛舉。如有指教與建議也請隨時示下為荷。
History in Mathematics Education: Challenges for a new millennium
August 9-14, 2000, Taipei
A Satellite Meeting of ICME-9
一 組織國際籌備委員:Glen Van Brummelen, John Fauvel (HPM前任主席), Gail FiztSimmons, Lucia Grugnetti, Wann-Sheng Horng (洪萬生), Victor Katz, Jan van Maanen (召集人,HPM現任主席), Eleanor Robson, Chikara Sasaki (佐佐木 力), Siu Man Keung (蕭文強), Eduardo Veloso (HEM Braga 1996承辦人)
國內籌備委員:國立台灣師範大學數學系全體教職員
二 研討會內容1. 主題演講
2. 專題研究報告
S1. 亞洲與太平洋地區的數學
S2. 1800年以前的數學教育
S3. 數學史在數學教學中的有效性:實證研究
S4. 東西方數學理念的對比與傳播
S4.
“ ICMI-Study Book – HPM” 的推薦與討論S5. 科學史與科學教育(特別針對國內學者)
3. 工作坊
4. 圓桌討論
5. 小組報告
6. 展覽
7. 非標準媒介的數學史(作品)呈現
三 研討會時程(暫訂)四 註冊資訊八月九日(星期三)下午:報到與開幕
八月十日、十一日: 全天研討會
八月十二日(星期六):參觀旅遊
八月十三、十四日:全天研討會
八月十五日(星期二):研討會、閉幕
註冊費(尚未決定,但以不超過美金150元為度。國內學者請自行利用研究計畫吸收。中小學教師與會將尋求各種管道提供補助)
其他住宿將在『第一輪通知』中披露。
五 研討會使用語言:英文(但若人力許可,將提供中文摘要) 六 重要日期1999年10月:寄發第一輪通知
1999年12月:寄發第二輪通知
2000年4月1日:預定『提交論文』報名截止
2000年6月1日:寄發研討會資料。論文彙編截稿。