next up previous
¤U¤@­¶: ¤T¡B¿ï¶ñÃD ¤W¤@­¶: ¤G¡B¦h¿ïÃD «e¤@­¶: 6

7

½Ð°Ý¹ï©ó¤U¦C­þ¨Ç¿ï¶µ¡A¥i¥H§ä¨ì¹ê¼Æ a¡A¨Ï±o¿ï¶µ¸Ì­±©Ò¦³ªº¼Æ³£¦P®Éº¡¨¬¤@¤¸¤G¦¸¤£µ¥¦¡ x2 + (2 - a)x - 2a < 0¡H

(1) -1, 0         (2) 1, 2, 3 ,....(©Ò¦³ªº¥¿¾ã¼Æ)    (3) -3, -4, -5,.... (©Ò¦³¤p©ó -2 ªº¾ã¼Æ)

(4) 97, 2008 (5) - $ \pi$, $ \pi$ ($ \pi$ ¬O¶ê©P²v)


»¡©ú:¤S¬O¤@­Ó¥E¬Ý¤§¤U¥i¯à¬Ý¤£À´ÃD·NªºÃD¥Ø. ³o¬O¤@­Ó¤G¦¸¤£µ¥¦¡ªºÃD¥Ø, ¤£¹L«Ü¥i¯à³\¦h¦P¾Ç¥Î¤@¦¸¤£µ¥¦¡¨Ó¸Ñ, ÁöµM¦p¦¹³B²zÅÞ¿è¤W¥i¯à¤£°÷ÄYÂÔ, «o¤@¼Ë¥i±o¨ì¥¿½Tªºµª®×. ÃD¥ØÁöµM¤£Ãø, ¦ý¬O``¼Æ¾Ç±M®a''ªº¥Î»y¥i¯àÀ~¶]¤F³\¦h¤pªB¤Í.

ÃD¥Ø³o»ò©í¤f, ¨ä¹ê¬O¦]¬°ÅÞ¿è¤Wªº¥Î»y¦³®É´N¬O³o»ò¤£¦ÛµM. ÃD¥Ø¬O°Ý­þ¨Ç¿ï¶µ¤¤ªº¼Æ (¥þ³¡¥N¤J x ¤¤) ³£¯àº¡¨¬¦P¤@­Ó¤£µ¥¦¡ x2 + (2 - a)x - 2a < 0, ¨ä¤¤ a ¬O¬Y¤@­Ó©T©wªº¹ê¼Æ (§Úªº¸ÑÄÀÁÙ¬O¨S¦³¤ñ¸û¦n). ©Î³\ª½Ä±¤W¦³³\¦h¦P¾Ç·|§â¦U¿ï¶µªº¼Æ¤@¤@¥N¤J x2 + (2 - a)x - 2a < 0 ¤¤¬Ý¬Ý¦³¨S¦³¦@¦Pªº a ·|º¡¨¬. ¨Ò¦p¿ï¶µ (1) ´N¬O¤À§O¥N¤J -1, 0 «á±o¨ì 1 - 2 + a - 2a < 0 ¥H¤Î -2a < 0. ³o¼Ëªº¬Ýªk¤£¿ù, ¦]¬°¸Ñªº¬O²³æªº¤@¦¸ªº¤£µ¥¦¡. ¤£¹LÅÞ¿è¤Wªº¯Ê¥¢¬O, ³o¼Ë¥u¬O§ä¨ì a ¥i¯àªº½d³ò¨Ï±o¥N¤Jªº¼Æ·|º¡¨¬¤£µ¥¦¡, ¨Ã¥¼¾á«O³o¼Ëªº a ·|¨Ï±o¥N¤Jªº¼Æ³£º¡¨¬¤£µ¥¦¡ (³o¨ä¹ê¤]¬O¹ïªº, ¦ý¬O»Ý­nÅçÃÒ). ©Ò¥H¥Î³oºØ¤èªk, ­Y¥N¤J¿ï¶µ¤¤©Ò¦³ªº¼Æ«á±o¨ìªº a ¨S¦³¦@¦Pªº¥æ¶°, ´N¥i¥H½T»{¦¹¿ï¶µ¤£¥¿½T. ­Y a ¦³¦@¦Pªº¥æ¶°, ³oªí¥Ü½d³ò¤ºªº a ``¦³¥i¯à''º¡¨¬§Ú­Ìªº­n¨D, ©Ò¥HÁٻݭn½T»{¦b½d³ò¤ºªº¬Y­Ó a ½T¹ê·|¨Ïªº¿ï¶µ¤¤ªº¼Æ³£º¡¨¬¤£µ¥¦¡¤~¦æ. ¨Ò¦p¿ï¶µ (1) ¦p«e­z, §Ú­Ì§ä¨ì a ªº¦@¦P½d³ò¬° a > 0, ©Ò¥H§Ú­Ì¥i§ä¤@­Ó¼Æ, ¦p a = 1 ¬Ý¬Ý¦¹¿ï¶µªº¨â­Ó¼Æ -1, 0 ¬O§_º¡¨¬ x2 + (2 - 1)x - 2 < 0. ¨Æ¹ê¤W x = - 1, 0 ®É³£º¡¨¬ x2 + x - 2 < 0, ¤]´N¬O»¡¿ï¶µ (1) ¬O¹ïªº.

²{¦b¨Ó¬Ý¬Ý¿ï¶µ (2) ©M (3), ³o¨â­Ó¤ñ¸û³Â·Ð¦]¬°¦³µL½a¦h­Ó¼Æ­n¥N. ¨SÃö«Y, §Ú­Ì°²³]­n¥N¤Jªº¼Æ¬O n (°²¸Ë¥¦¬O¤@­Ó¼Æ, ¦Ó¤£¬O¥¼ª¾¼Æ) ¥N¤J«á±o n2 + (2 - a)n - 2a < 0. °O±o³oùØ n ¬O¤@­Ó¤wª¾ªº¼Æ, §Ú­Ì­n¨D a (¬Û¹ï©ó n) ªº½d³ò, ©Ò¥H±N¦³ a ªº³¡¤À¦X¨Ö²¾¶µ±o (n + 2)a > n2 + 2n. ¥Ñ©ó¿ï¶µ (2) ¤¤ªº n ¬Òº¡¨¬ n + 2 > 0 ©Ò¥H°£¥H n + 2 «á±o a > n; ¦Ó¿ï¶µ (3) ¤¤ªº n ¬Òº¡¨¬ n + 2 < 0 ©Ò¥H°£¥H n + 2 «á±o a < n (ª`·N°£¥H¤p©ó 0 ªº¼Æ­nÅܸ¹). ³o§i¶D§Ú­Ì¦b¿ï¶µ (2) ¤¤­n¥N¤J©Ò¦³ªº¥¿¾ã¼Æº¡¨¬¤£µ¥¦¡ªº¸Ü, ¨º»ò a ¥²¶·­n¤j©ó©Ò¦³ªº¥¿¾ã¼Æ. µM¦Ó¤£¥i¯à¦³¤@­Ó¹ê¼Æ·|¤j©ó©Ò¦³ªº¥¿¾ã¼Æ, ©Ò¥H¿ï¶µ (2) ¤£¥i¯à¦¨¥ß. ¦P²z, ­Y¿ï¶µ (3) ¦¨¥ß, ªí¥Ü a ¥²¶·¤p©ó©Ò¦³¤p©ó -2 ªº¾ã¼Æ, ³o¤]¬O¤£¥i¯àªº, ©Ò¥H¿ï¶µ (3) ¤]¤£¹ï.

¿ï¶µ (4) ¥u¦³¨â­Ó¼Æ 97 ©M 2008, ¥N¤J«á±o a »Ýº¡¨¬ a > 97 ©M a > 2008. §Ú­Ì¦Ò¼{«Ü¤jªº a ¦n¤F (¨Ò¦p a = 10002) «Ü®e©ö¬Ý¥X x = 97 ©M x = 2008 ³£·|º¡¨¬ x2 - 10000x - 20004 < 0, ©Ò¥H¿ï¶µ (4) ¬O¹ïªº. ¿ï¶µ (5) »Ý¦Ò¼{ - $ \pi$ ©M $ \pi$, ª`·N - $ \pi$ + 2 < 0, ©Ò¥H¥N¤J x = - $ \pi$ ©Ò±o a ªº½d³ò¬° a < - $ \pi$; ¦Ó¥N¤J x = $ \pi$, §Ú­Ì±o a > $ \pi$. µo²{¦¹®É§ä¤£¨ì¦@¦Pªº a, ©Ò¥H¿ï¶µ (5) ¤£¯à¿ï.

¨ä¹êÃD¥Ø­n¬Oµ¹©w¤G¦¸¤£µ¥¦¡, °Ý§A¿ï¶µ¤¤ªº¼Æ¬O§_º¡¨¬¦¹¤G¦¸¤£µ¥¦¡, ¬Û«H¤j®a³£·|³B²z, ©Ò¥H³o¤S¬O¤@­Ó­ËµÛ°Ýªº°ÝÃD. «e­±¤w¸g½Í¹L¤F, ­ËµÛ°Ýªº°ÝÃD§Ú­ÌÁÙ¬O¥i¥H¥¿ªº¨Ó³B²z, ¥u­n§Ú­Ì``´±''§â¥¼ª¾¼Æ·í¤wª¾¼Æ¨Ó³B²z§Y¥i. ¥»ÃD¤¤§Ú­Ì¥i¥H±N a ¬Ý¦¨¤wª¾¼Æ, ¬Ý¬Ý x2 + (2 - a)x - 2a < 0 ³o¤@­Ó``¤wª¾''ªº¤G¦¸¤£µ¥¦¡¨ä¸Ñ¶°¦X¬O¤°»ò. ¤@¯ë¨Ó»¡¸Ñ f (x) < 0 ªº¤£µ¥¦¡­n¥ý¨D f (x) = 0 ªº¸Ñ¦A¨M©w·|¤p©ó 0 ªº½d³ò. ³o¸Ì§Ú­Ì¤]¬O¦pªkªw»s, ¤£¦Pªº¬O³o­Ó¤£µ¥¦¡ªº¸Ñ¶°¦X·|¦] a ªº§ïÅܦӧïÅÜ. ­º¥ý§Ú­Ì§Q¥Î¦]¦¡¤À¸Ñ©Î¬O¤j®a±`¥Îªº¤½¦¡¸Ñ±o¨ì x2 + (2 - a)x - 2a = 0 ªº¸Ñ¬° x = a ©M x = - 2. ·í a = - 2 ®É, x2 + (2 - a)x - 2a < 0 Åܦ¨ (x + 2)2 < 0, ³o­Ó¤£µ¥¦¡¤£¥i¯à¦³¹ê¼Æ¸Ñ, ©Ò¥H§Ú­Ì¥u­n¦Ò¼{ a < - 2 ©M a > - 2 ³o¨âºØ±¡§Î. ¦pªG a ¬O¤@­Ó¹ê¼Æº¡¨¬ a < - 2 ¨º»ò x2 + (2 - a)x - 2a < 0 ªº¸Ñ¶°¦X´N¬O {x $ \in$ $ \mathbb {R}$ | a < x < - 2}, ¦Ó·í a > - 2 ®É¸Ñ¶°¦X¬° {x $ \in$ $ \mathbb {R}$ | - 2 < x < a}. Á`¦Ó¨¥¤§, ­Y a ¬O¤@­Ó¹ê¼Æ, «h x2 + (2 - a)x - 2a < 0 ªº¸Ñ¶°¦X·|¬OªÅ¶°¦X (·í a = - 2 ®É) ©Î¬O a ©M -2 ¤§¶¡ªº¦³¬É¶}°Ï¶¡ (·í a$ \ne$ - 2 ®É). ©Ò¥H¿ï¶µ¤¤ªº¼Æ­n¦P®Éº¡¨¬¦P¤@­Ó¤G¦¸¤£µ¥¦¡, ªí¥Ü¥¦­Ì¥²¶·¸¨¦b¦P¤@­Ó¥H -2 ¬°ºÝÂIªº¦³¬É¶}°Ï¶¡¤º. ¨Ò¦p¿ï¶µ (1) ªº { - 1, 0} ©M¿ï¶µ (4) ªº {97, 2008}. ¿ï¶µ (2), (3) ªº¼ÆÁöµM¤À§O·|¸¨¦b¥H -2 ¬°¤@­ÓºÝÂIªº¶}°Ï¶¡, ¦ý¤£¬O¦³¬Éªº. ¦Ó¿ï¶µ (5) ¤¤ªº { - $ \pi$,$ \pi$} ¥Ñ©ó - $ \pi$ < - 2 < $ \pi$, ©Ò¥H¥¦­Ì¤£¥i¯à¸¨¦b¦P¤@­Ó¥H -2 ¬°ºÝÂIªº¶}°Ï¶¡¤º.



next up previous
¤U¤@­¶: ¤T¡B¿ï¶ñÃD ¤W¤@­¶: ¤G¡B¦h¿ïÃD «e¤@­¶: 6
Li 2008-08-16