國 立台灣師範大學數 學系教學大綱

授課教師:蔡碧紋   助理教授

課程名稱 (中文):機率導論

(英文):Introduction to Probability

學年: 九十七學年 第一學期 授課班 級: 數學系三
全/半年: 半 必/選修:必 學分: 3
上課時間:星期四下午 2:10 至 5:00 上課地點:
教師聯絡方式:數學館 M205 Office Hours: 週三 9-11
教學網頁:http://math.ntnu.edu.tw/~pwtsai/prob97/index.html
E-mail: pwtsai@math.ntnu.edu.tw
助教姓名: 助教 Office Hours:
助教聯絡方式:數學館 M 410


最新 消息: 學期成績

學期成績未達到及格標準的同學.可於2/19(四)下午參加補考.
補考通過者,學期成績將可修正至60分.
有意願參加的同學請於1/24前以e-mai (pwtsai@math.ntnu.edu.tw) 與我連絡.


一、教學目標:

    本課程介紹機率論的基本概念和基本極限理論,並 引導學生發掘機率的奧秘。


新增小考答案

二、教材內容及進度規劃:

書目
    Hogg, R.V. & Tanis, E. A. (2006) Probability and Statistical Inference, 7th edition, Prentice Hall.
    Ross, S. (2006) A First Course in Probability 7th ed. Pearson Prentice Hall.
 

Syllabus


HT
1. Combinatorial Analysis
(a) Counting techniques: multiplication principle, permutations, combinations
(b) Multinomial Coefficients
1.3
2. Probability: Set theory (a) Probability set up: sample space, event
(b) axioms and some propositions
(c) What is probability? equally likely, relative frequency, a measure of belief.
1.1
1.2
3. Conditional probability  (a) Conditional probability
(b) Bayes’ Formula
(c) Independent events
1.4
1.5
1.6
4. Random variables (a) What is random variables
(b) Cumulative distribution function
(c) Discrete R.V.s
(d) The Mean, variances and standard deviation
(e) Some discrete distributions: Bernoulli trials, Binomial Distribution, Uniform Distribution, Geometric Distribution, Negative Binomial Distribution, Hypergeometric Distribution, Poisson Distribution,
(f) Poisson approximation to the Binomial
(g) The moment generating function
ch2
Midterm exam


5.Continuous Distribution (a) Continuous-type data
(b) Some continuous distribution: Uniform Distribution, Exponential Distribution, Normal Distribution, Cauchy Distribution
(c) Gamma and Chi-square Distribution
(d) Normal approximation to the binomial
ch3  5.1
5.2
5.5


quiz 1 (1 hr)

6. Jointly Distributed R.V.s (a) Joint Distribution
(b) Independent r.v.s
(c) Sums of Independent r.v.s
(d) Conditional Distribution
(e) Joint Distribution of Functions of Random Variables
(f) Distributions of functions of a random variable: Normal to Chi-square Distribution, Lognormal
4.1
4.2
4.3
4.4
4.5

quiz 2 (1 hr)

7. Expectation (a) Expectation of sums of r.v.s
(b) Covariance, Variance of sums, Correlations
(c) Conditional expectation
(d) More one Normal Distribution
4.6
5.3
5.6
8. Limit laws (a) Chebyshev’s inequality
(b) Strong law of large numbers, Weak law of large numbers
(c) The Central Limit Theorem
4.7
5.4
Final exam



三、實施 方式:

    課 堂講授

Lecture notes HW

9/18
Ch1.pdf


9/25

hw97_1.pdf (due 10/2) 9/25修正後

10/2
Ch2.pdf hw97_2.pdf (due 10/9)

10/9

2.1-3(a,d), , 2.1-11.,
2.2-2, 2.2-10
2.3-13 2.3-14

10/16

2.4-3, 2.4-6, 2.4-10 2.4-23
2.5-2 (a) (d), 2.5-4, 2.5-8 2.5-10, 2.5-11, 2.5-21


10/23
HW: due 2-1 ~ 2-5 2.6-3, 2.6-4, 2.6-8, 2.6-10

10/30
期中考
mid1.pdf

11/6
Ch3.pdf
some graphs



11/13
3.2-3.3 and 3.4 gamma 3.2-1(c), 3.2-6, 3.2-8
3.3-3, 3.3-4, 3.3-5, 3.3-10,
3.4-7, 3.4-8, 3.4-12

11/20
3.4 Chi-square 3.5, 5.2 

11/27
小考 3.3, 3.4, 3.5, 5.2

Ch401.pdf
3.4-11, 3.4-16, 5.2-11, 5.2-18(b)
3.5-2, 3.5-10, 3.5-11
5.2-5(b), 5.2-6(c), 5.2-10, 5.2-24, 5.2-26

12/4
Ch402.pdf

12/11
Ch403.pdf 4.1-1, 4.1-9, 4.1-12
4.2-3(a),(b), 4.2-7, 4.2-8(b), (c), (d). 4.2-12 (a) (b)
4.3-1(e) 4.4-13(d) 4.3-16(c)  (due 12/11)

12/18

4.4-1, 4.4-8, 4.4-14
4.5-2, 4.5-3, 4.5-6, 4.5-7, 4.5-9, 4.5-15. (due 12/30)

12/25
小考 4.1-4.4 請看講義範圍
ch401.pdf & ch402.pdf
quiz2_sol.pdf


1/1

4.6-1, 4.6-6, 4.6-26
4.7-1(a), 4.7-6, 5.2-17,
5.3-3, 5.3-5, 5.3-6 (due 1/8)

1/8
Ch5.pdf 5.3-8(b) 5.3-14, 5.3-18 5.4-10, 5.4-14.
5.5-1, 5.5-8, 5.5-11, 5.5-22 (no need to hand in)

1/15
期末考



四、評量 標準與成績計算方式:

    (A) 兩 次考試 各 30%, 30% 及 兩 次小 考15%, 作業及平時成績25%
    (B) 兩 次考試 各 40% 40%
兩 次小 考20%

參考 書目: Pitman, J. (1999) Probability, Springer.

國內相 關網站 中山大學應用數學系機率網路學習館 http://eprob.math.nsysu.edu.tw/