¤U¤@¶: Polynomials over the Integers
¤W¤@¶: ¤@¨Ç±`¨£ªº Rings
«e¤@¶: The Ring of Integers
Ring of Polynomials over a Field
¤j®a³£ª¾¹D¦³²z«Y¼Æªº¦h¶µ¦¡¦³©M¾ã¼Æ«ÜÃþ¦üªº©Ê½è, ´N¬O©Ò¿×ªº¾l¦¡©w²z.
¨Æ¹ê¤W³oÓ©w²z¹ï«Y¼Æ¦b¤@¯ëªº field ªº¦h¶µ¦¡¤]¹ïªº.
¦b³o¤@¸`¤¤§Ú̱N±´°Q³oºØ polynomial ring.
¤j®a·|µo²§ÚÌ´X¥G¬O§â¤W¤@¸`¤¤¾ã¼Æªº¨º¤@®M²z½×§¹§¹¾ã¾ãªº·h¹L¨Ó.
¥O F ¬O¤@Ó field. §Ú̦Ҽ¥Ñ©Ò¦³ªº«Y¼Æ¦b F ªº¦h¶µ¦¡
f (
x) =
a0 +
a1x +
... +
an - 1xn - 1 +
anxn,
ai F i = 0,...,
n
©Ò§Î¦¨ªº¶°¦X F[x]. §Ú̫ܦ۵Mµ¹
F[x] ¤¤ªº¤¸¯À©w¸q¥H¤Uªº¥[ªk©M¼ªk: Y
f (x) = a0 + a1x ... + anxn ©M
g(x) = b0 + b1x + ... + bmxm ¬O F[x] ¤¤ªº¨â¤¸¯À,
©w
f (x) + g(x) = c0 + c1x + ... + crxr, ¨ä¤¤¹ï©Ò¦³ªº
i {1,..., r},
ci = ai + bi ¥B
r = max{m, n}. ¥t¥ §ÚÌ©w
f (x) . g(x) = d0 + d1x + ... + dm + nxm + n, ¨ä¤¤¹ï©Ò¦³ªº
i {1,..., m + n},
di = a0 . bi + a1 . bi - 1 + ... + ai - 1 . b1 + ai . b0.
ª`·N³o¸Ì, ·í j > n
®É§ÚÌ¥O aj = 0 ¥B ·í k > m ®É§ÚÌ¥O bk = 0.
¨ä¹ê³o´N¬O§Ú̼ôª¾¤@¯ë¦h¶µ¦¡ªº¥[ªk»P¼ªk:
·í¬Û¥[®É´N¬O±N¦P¦¸¶µªº«Y¼Æ¬Û¥[; ¬Û¼´N¬O¦U¶µ¥ý®i¶«á¦A¦X¨Ö¦P¦¸¶µ.
¸g¥Ñ¤@µfªºÅçºâ§ÚÌ¥i¥H±o¨ì F[x] ¬O¤@Ó commutative ring with 1,
³o¸Ì§ÚÌ´N²¤¥hÅçºâ¹Lµ¤F. ¤£¹Ln±j½Õ¤@¤U F[x] ³oÓ ring ªº¥[ªk
identity 0 ´N¬O 0 ¦h¶µ¦¡, ¤]´N¬O¦U¶µ«Y¼Æ³£¬O 0 (³o¸Ìªº 0 ¬O
F ªº 0) ªº¦h¶µ¦¡. ¦Ó¼ªkªº identity 1 ´N¬O 1
³o¤@Ó±`¼Æ¦h¶µ¦¡, ¤]´N¬O±`¼Æ¶µ¬° 1 (³o¸Ìªº 1 ¬O F ªº 1)
¨ä¥L¶µ«Y¼Æ³£¬O 0. ³q±`§Ú̺٠F[x] ¬° the ring of
polynomials in x over F.
·í§Ú̸I¨ì¤@Ó·sªº ring ®É, º¥ý·|°Ýªº¬O¥¦ªº zero divisor ©M unit
¦³þ¨Ç? ³o¸Ì¥Ñ©ó§Ú̳B²zªº¬O polynomial ring
¦³¤@Ó¯S§O¦n¥Îªº¤u¨ã¨ÓÀ°§ÚÌ, ´N¬O©Ò¿×ªº degree.
Definition 7.2.1
Y
f (
x) =
a0 +
a1x +
... +
anxn F[
x] ¥B
an 0, «hºÙ
f (
x)
ªº degree ¬°
n °O¬°
deg(
f (
x)) =
n.
ª`·NÁöµM 0 ¦h¶µ¦¡§Ú̬ݦ¨¬O±`¼Æ¦h¶µ¦¡, ¤£¹L¥Ñ©w¸q¦]¬° 0
¦h¶µ¦¡¨Ã§ä¤£¨ì¤£¬° 0 ªº«Y¼Æ, ©Ò¥H¹ï 0 ¦h¶µ¦¡§Ṳ́£¯à»¡¥¦ªº
degree ¬° 0. ³q±`§ÚÌ´N¤£q 0 ªº degree (¦³ªº®Ñ©w¸q
deg(0) = - ). ±µ¤U¨Ó§ÚÌ¨Ó¬Ý degree ªº©Ê½è.
Lemma 7.2.2
Y
f (
x) ©M
g(
x) ³£¬O
F[
x] ¤¤ªº«D 0 ¦h¶µ¦¡, «h
deg(f (x) . g(x)) = deg(f (x)) + deg(g(x)).
µý ©ú.
Y
deg(
f (
x)) =
n ¥B
deg(
g(
x)) =
m ¤]´N¬O»¡
f (
x) =
a0 +
a1x +
... +
anxn ¤Î
g(
x) =
b0 +
b1x +
... +
bmxm, ¨ä¤¤
an 0 ¥B
bm 0. ²¦Ò¼
f (
x)
. g(
x) =
ckxk, ¨ä¤¤
ck =
ai . bj. º¥ý§ÚÌÃÒ©ú·í
k >
n +
m ®É
ck = 0.
Y
in ¥B
jm, «h
i +
jn +
m. ¥Ñ¦¹ª¾·í
k >
n +
m ®ÉY
i +
j =
k, «h
i >
n ©Î
j >
m. ¤]´N¬O»¡
ai = 0 ©Î
bj = 0. ¬Gª¾·í
k >
n +
m ®É
ck = 0. ¦Ó·í
k =
n +
m ®É, ¦Ò¼
i +
j =
k §Ṳ́]¥iª¾°ß¦³·í
i =
n ¥B
j =
m ®É
ai 0 ¥B
bj 0. ´«¥y¸Ü»¡
cn + m =
an . bm. ¥Ñ©ó
F ¬O¤@Ó field, ©Ò¥H
F ¨S¦³ zero
divisor, ¬G¥Ñ
an 0 ¥B
bm 0 ¥i±o
cn + m 0. ´«¥y¸Ü»¡
deg(
f (
x)
. g(
x)) =
n +
m.
¥Ñ Lemma 7.2.2, §ÚÌ°¨¤W¥i¥Hª¾¹D F[x] ªº zero divisor ©M unit
¦³þ¨Ç.
Proposition 7.2.3
¥O
F ¬O¤@Ó field.
- F[x] ¤¤¨S¦³ zero divisor, ´«¥y¸Ü»¡ F[x] ¬O¤@Ó integral
domain.
- F[x] ¤¤ªº unit ´N¬O©Ò¦³«D 0 ªº±`¼Æ.
µý ©ú.
(1) ¥ô¨ú
f (
x),
g(
x)
F[
x] ¥B¬Ò¤£¬° 0. Y
deg(
f (
x)) =
n ¥B
deg(
g(
x)) =
m, «h¥Ñ Lemma
7.2.2 ª¾
deg(
f (
x)
. g(
x)) =
n +
m.
´«¥y¸Ü»¡,
f (
x)
. g(
x) ªº
xn + m ¶µ«Y¼Æ¤£¬° 0. ¬Gª¾
f (
x)
. g(
x) ¤£¬° 0 ¦h¶µ¦¡. ¬G±oÃÒ
F[
x] ¨S¦³ zero divisor.
(2) Y f (x) ¬O F[x] ¤¤ªº¤@Ó unit, ¨Ì©w¸qª¾¦s¦b
g(x) F[x]
¨Ï±o
f (x) . g(x) = 1. ¦]¬° 1 ¬O±`¼Æ¦h¶µ¦¡¨ä degree ¬° 0, ¬G¥Ñ
Lemma 7.2.2 ª¾
deg(f (x) . g(x)) = deg(f (x)) + deg(g(x)) = 0.
¤S
deg(f (x)) 0 ¥B
deg(g(x)) 0, ¬G±o
deg(f (x)) = 0
´«¥y¸Ü»¡ f (x) ¬O±`¼Æ¦h¶µ¦¡. ¤S 0 ¤£¥i¯à¬O unit, ¬G±o f (x)
¬O¤@Ó«D 0 ªº±`¼Æ. ¤Ï¤§, Y f (x) = c ¬O¤@Ó«D 0 ªº±`¼Æ, ¤]´N¬O
c F ¥B c 0. ¦] F ¬O¤@Ó field, ¦b F ¤¤¥i¥H§ä¨ì c ªº
inverse c-1. ¬G¥O
g(x) = c-1 F[x], «h
f (x) . g(x) = 1.
¬Gª¾ f (x) = c ¬O¤@Ó unit.
±µ¤U¨Ó§ÚÌ¨Ó¬Ý polynomial ring ªº¾l¦¡©w²z.
Theorem 7.2.4 (Euclid's Algorithm)
Y
F ¬O¤@Ó field, µ¹©w¨â polynomials
f (
x),
g(
x)
F[
x], ¨ä¤¤
g(
x)
0, «h¦s¦b
h(
x),
r(
x)
F[
x] º¡¨¬
f (
x) =
h(
x)
. g(
x) +
r(
x), ¨ä¤¤
r(
x) = 0 ©Î
deg(
r(
x)) < deg(
g(
x)).
µý ©ú.
º¥ýnª`·N, ³o¸Ìªº¾l¦¡
r(
x) ¥Ñ©ó¥i¯à¬O 0, ¦Ó 0 ¤S¨S¦³ degree,
©Ò¥H§Ṳ́£¯à¥u»¡
deg(
r(
x)) < deg(
g(
x)), ¦Ó¥²¶·¥[¤W
r(
x) = 0
³oÓ¥i¯à©Ê.
§Ú̧Q¥Î©M Theorem 7.1.1 ¬Û¦üªºÃÒ©ú¦Ò¼
W = {f (x) - l (x) . g(x) | l (x) F[x]} ³o¤@Ó¶°¦X. ¦pªG 0 W, ¤]´N¬O»¡¦s¦b
h(x) F[x] ¨Ï±o
f (x) - h(x) . g(x) = 0, ¬G±oÃÒ r(x) = 0. ¦pªG
0 W, «h¥O r(x) W ¬O W ¤¤ degree ³Ì¤pªº polynomial.
°²³]
deg(r(x)) = m ¥B
deg(g(x)) = n, §ÚÌ·Q¥Î¤ÏÃÒªkÃÒ©ú m < n.
¦pªG mn, °²³] r(x) ªº³Ì°ª¦¸ xm ¶µªº«Y¼Æ¬° a, ¦Ó g(x)
ªº³Ì°ª¦¸ xn ¶µ«Y¼Æ¬° b. ¥Ñ©ó b F ¥B b 0, ¦Ò¼
s(x) = r(x) - ((a . b-1)xm - n) . g(x) ³oÓ¦h¶µ¦¡. ¥Ñ©ó
r(x) ©M
((a . b-1)xm - n) . g(x) ªº³Ì°ª¦¸ xm
ªº«Y¼Æ¬Ò¬° a, ¬Gª¾
deg(s(x)) < m = deg(r(x)). ¥t¥ ¥Ñ°²³] r(x) W ª¾¦s¦b
l (x) F[x] ¨Ï±o
r(x) = f (x) - l (x) . g(x). ¬G±o
s(
x) =
f (
x) -
l (
x)
. g(
x) - ((
a . b-1)
xm - n)
. g(
x) =
f (
x) - (
l (
x) + (
a . b-1)
xm - n)
. g(
x)
W.
¤]´N¬O»¡
s(
x) ¬O
W ¤¤¤@Ó¤ñ
r(
x) degree ¤pªº polynomial, ¦¹©M
r(
x) ¬O
W ¤¤ degree ³Ì¤pªº°²³]¬Û¥Ù¬Þ. ¬G±o
m <
n ¤]´N¬O»¡¦s¦b
h(
x)
F[
x] ¨Ï±o
r(
x) =
f (
x) -
h(
x)
. g(
x) ¥B
deg(
r(
x)) < deg(
g(
x).
¬G±oÃÒ¥»©w²z.
Remark 7.2.5
³o¸Ìn±j½Õ¤@¤U, ¦b Theorem
7.2.4 ªºµý©ú¤¤§Ú̥Ψì¤F
F
¬O¤@Ó field ªº©Ê½è (§Y
g(
x) ªº³Ì°ª¦¸«Y¼Æ
b ªº inverse
b-1
¦s¦b). ©Ò¥H Theorem
7.2.4 ¨Ã¤£¯à®M¥Î¨ì«Y¼Æ¬°¤@¯ëªº ring ªº
polynomials ¤W. ¨Æ¹ê¤W¦b
[
x] ¤¤´N¨S¦³¾l¦¡©w²z. ¨Ò¦p¦Ò¼
f (
x) =
x2,
g(
x) = 2
x §ÚÌ´N¨S¿ìªk§ä¨ì¾ã«Y¼Æªº¦h¶µ¦¡
h(
x) ¨Ï±o
f (
x) -
h(
x)
. g(
x) = 0 ©Î¬O
deg(
f (
x) -
h(
x)
. g(
x)) < deg(
g(
x)).
§ÚÌ´¿§Q¥Î¾ã¼Æªº¾l¼Æ©w²z (Theorem 7.1.1) ÃÒ±o
¤¤ªº
ideal ¬Ò¬O principle ideal (Theorem 7.1.2). ¦P¼Ëªº§Q¥Î¾l¦¡©w²z
(Theorem 7.2.4), §ÚÌ¥i±o¥H¤Uªº©w²z.
Theorem 7.2.6
Y
F ¬O¤@Ó field, «h
F[
x] ¤¤ªº ideal ³£¬O principle ideal.
µý ©ú.
¥ô¨ú
F[
x] ªº¤@Ó ideal,
I. §Ú̧Ʊæ¦b
I ¤¤§ä¨ì¤@¤¸¯À
g(
x)
¨Ï±o
g(
x)
=
I. ¥O
g(
x) ¬O
I ¤¤ degree ³Ì¤pªº polynomial,
§Ú̧ƱæÃÒ±o
g(
x)
=
I.
º¥ý¥Ñ©ó g(x) I ©Ò¥H·íµM
g(x) I. ¤Ï¤§, nÃÒ©ú
I g(x) ¤]´N¬O»¡¥ô¨ú f (x) I ³£n§ä¨ì
h(x) F[x] ¨Ï±o
f (x) = h(x) . g(x). §Q¥Î Theorem 7.2.4
§Ú̪¾¹D¦s¦b
h(x), r(x) F[x] ¨Ï±o
f (x) = h(x) . g(x) + r(x)
¨ä¤¤ r(x) = 0 ©Î
deg(r(x)) < deg(g(x)). µM¦Ó
g(x), f (x) I,
¬G±o
r(x) = f (x) - h(x) . g(x) I. ¦pªG r(x) 0, ªí¥Ü r(x)
¬O I ¤¤¤@Ó¤ñ g(x) degree ÁÙ¤pªº polynomial, ³o©M·íªì g(x)
ªº¿ï¨ú¬Û¥Ù¬Þ. ¬Gª¾ r(x) = 0, §Y
f (x) = h(x) . g(x) g(x).
±µ¤U¨Ón½Í F[x] ¤W¦h¶µ¦¡ªº¤À¸Ñ. ©Ò¥HÁÙ¬Oµ¹¦]¦¡,
¤½¦]¦¡©M³Ì¤j¤½¦]¦¡¤U¤@Ó©w¸q.
Definition 7.2.7
¥O
f (
x),
g(
x)
F[
x].
- Y
d (x) F[x] ¥B¦s¦b
h(x) F[x] ¨Ï±o
f (x) = h(x) . d (x), «hºÙ d (x) ¬O
f (x) ªº¤@Ó divisor, °O°µ
d (x) | f (x).
- Y
l (x) F[x], ¥B
l (x) | f (x) ¤Î
l (x) | g(x), «hºÙ l (x) ¬° f (x), g(x) ªº
common divisor.
- Y
d (x) F[x] ¬O f (x), g(x) ªº common divisor ¤¤ degree ³Ì¤jªº polynomial, «hºÙ d (x) ¬° f (x), g(x) ªº greatest common divisor.
nª`·N³o¸Ì greatest common divisor ¨Ã¤£°ß¤@. ¦³ªº®Ñ·|©w greatest
common divisor ¬O©Ò¦³ common divisor ¤¤ degree ³Ì¤j¥B³Ì°ª¦¸«Y¼Æ¬°
1 ªº polynomial, Y¦b¦¹©w¸q¤§¤U greatest common divisor ´N°ß¤@¤F.
¤@¯ë¥i¥H§Q¥Î©Ò¿×ªºÁÓÂà¬Û°£ªk±N¨âÓ¦h¶µ¦¡ªº greatest common divisor
¨D¥X¨Ó, ¦b³o¸Ì§Ú̱N§Q¥Î Theorem 7.2.6 §ä¨ì greatest common
divisor ¨Ã±o¨ì¨ä°ò¥»©Ê½è.
Proposition 7.2.8
µ¹©w
f (
x),
g(
x)
F[
x], «h¦s¦b
d (
x)
F[
x] º¡¨¬
d (
x)
=
f (
x)
+
g(
x)
¥B
d (
x) ¬°
f (
x),
g(
x) ªº
greatest common divisor
µý ©ú.
¥Ñ Theorem
7.1.2 ª¾¦s¦b
d (
x)
F[
x] ¨Ï±o
d (
x)
=
f (
x)
+
g(
x)
. ±µµÛ§ÚÌnÃÒ©ú³oÓ
d (
x)
F[
x] ¬O
f (
x),
g(
x) ªº greatest common divisor. º¥ý·íµM¬OnÃÒ
d (
x) ¬O
f (
x),
g(
x) ªº common divisor. µM¦Ó¦]
f (
x)
f (
x)
f (
x)
+
g(
x)
=
d (
x)
,
¬Gª¾¦s¦b
h(
x)
F[
x] ¨Ï±o
f (
x) =
h(
x)
. d (
x). ¤]´N¬O»¡
d (
x) |
f (
x). ¦P²z, ¥Ñ
g(
x)
d (
x)
¥i±o
d (
x) |
g(
x).
¬Gª¾
d (
x) ¬O
f (
x),
g(
x) ªº common divisor.
¨º¬°¬Æ»ò d (x) ·|¬O f (x), g(x) ªº common divisor ¤¤ degree
³Ì¤jªº©O? ¥Ñ©ó
d (x) d (x) = f (x) + g(x),
§Ú̪¾¹D¦s¦b
m(x), n(x) F[x] ¨Ï±o
d (x) = m(x) . f (x) + n(x) . g(x). µM¦ÓY l (x) ¬O f (x), g(x) ªº common divisor, §Y
l (x) | f (x) ¥B
l (x) | g(x), ª¾¦s¦b
r(x), s(x) F[x] ¨Ï±o
f (x) = r(x) . l (x) ¥B
g(x) = s(x) . l (x). ¦]¦¹±o
d (x) = m(x) . (r(x) . l (x)) + n(x) . (s(x) . l (x)) = (m(x) . r(x) + n(x) . s(x)) . l (x).
¤]´N¬O»¡
l (
x) |
d (
x). ©Ò¥Hª¾
d (
x) ¬O©Ò¦³
f (
x),
g(
x) ªº common
divisor ¤¤ degree ³Ì¤jªº.
Proposition 7.2.8 ¤£¥u§i¶D§Ú̦p¦ó§ä¨ì greatest common
divisor, ¨Æ¹ê¤W¦bÃÒ©ú¤¤§Ṳ́]ÃÒ±o greatest common divisor
ªº¨âÓ«n©Ê½è.
Corollary 7.2.9
¥O
f (
x),
g(
x)
F[
x] ¥B
d (
x) ¬°
f (
x),
g(
x) ªº greatest common
divisor, «h
d (
x) ²Å¦X¥H¤U¨â©Ê½è:
- ¦s¦b
m(x), n(x) F[x] º¡¨¬
d (x) = m(x) . f (x) + n(x) . g(x).
- °²³]
l (x) | f (x) ¥B
l (x) | g(x), «h
l (x) | d (x).
¤@¯ë¦b¤@Ó ring ¤¤¤¸¯Àªº¤À¸Ñ, §Ú̬O¤£±N unit ¦C¤J¦Ò¼. ¨Ò¦p¦b
¤¤ªº¤À¸Ñ§Ú̳£¤£±N 1 ©M -1 ¦C¬°¦]¼Æ¨Ó¦Ò¼. ¦b F[x] ¤¤ªº units
¬O©Ò¦³«D 0 ªº±`¼Æ¦h¶µ¦¡ (Proposition 7.2.3),
©Ò¥H§Ṳ́]¤£¦Ò¼¥¦Ì¬°¯u¥¿ªº divisor. ¦]¦¹§Ú̦³¥H¤U¤£¥i¤À¸Ñ¦h¶µ¦¡
(irreducible element) ªº©w¸q.
Definition 7.2.10
¦Ò¼
F[
x] ¤¤ªº¤¸¯À
p(
x).
- Y¹ï¥ô·Nº¡¨¬
d (x) | p(x) ªº
d (x) F[x], ¬Ò¦³ d (x) = c ©Î
d (x) = c . p(x), ¨ä¤¤
0c F, «hºÙ p(x) ¬O¤@Ó irreducible element.
- Y¹ï¥ô·Nº¡¨¬
p(x) | f (x) . g(x) ªº
f (x), g(x) F[x] ¬Ò¦³
p(x) | f (x) ©Î
p(x) | g(x), «hºÙ p(x) ¬O¤@Ó prime element.
²³æ¨Ó»¡¤@Ó irreducible element ªí¥Ü¥¦¤£¥i¥H¼g¦¨¨âÓ degree
¤ñ¥¦¤pªº polynomial ªº¼¿n. «ÜÅãµM irreducible ©M prime
³o¨âºØ©w¸q¬O¤£¤@¼Ëªº, ¤£¹L¤U¤@Ó©w²z§i¶D§Ú̦b F[x] ¤¤³o¨âºØ©w¸qªº
polynomial ¬O¬Û¦Pªº.
Proposition 7.2.11
¦b
F[
x] ¤¤Y
p(
x) ¬O¤@Ó irreducible element, «h
p(
x) ¬O¤@Ó
prime element. ¤Ï¤§, Y
p(
x) ¬O¤@Ó prime element, «h
p(
x)
¬O¤@Ó irreducible element.
µý ©ú.
º¥ý§ÚÌÃÒY
p(
x) ¬O irreducible «h
p(
x) ¬O prime.
¤]´N¬O»¡°²³]¤wª¾
p(
x) ¬O irreducible. ¥ô¨ú
p(
x) |
f (
x)
. g(
x) §ÚÌnÃÒ©ú:
p(
x) |
f (
x) ©Î
p(
x) |
g(
x). µM¦Ó
p(
x) |
f (
x)
. g(
x) ªí¥Ü¦s¦b
r(
x)
F[
x] ¨Ï±o
f (
x)
. g(
x) =
r(
x)
. p(
x). ¦pªG
p(
x) |
f (
x) ¨º»ò´N±o¨ì§ÚÌnÃÒªº,
©Ò¥H§ÚÌ¥un°Q½×
p(
x)
f (
x) ªº±¡ªp. ¦¹®É§Ú̦Ҽ
p(
x),
f (
x)
ªº greatest common divisor ¥O¤§¬°
d (
x). ¥Ñ©ó
d (
x) |
p(
x) ¬G¥Ñ
p(
x) ¬O irreducible ªº°²³]ª¾
d (
x) =
c ©Î
d (
x) =
c . p(
x), ¨ä¤¤
0
c F. µM¦Ó
d (
x) ¤£¥i¯àµ¥©ó
c . p(
x), §_«h¥Ñ
d (
x)
¬O
p(
x),
f (
x) ªº common divisor ª¾
p(
x) =
c-1 . d (
x) |
f (
x)
(ª`·N
c ¬O
F[
x] ªº unit). ¦¹©M
p(
x)
f (
x) ¥Ù¬Þ. ¦]¦¹ª¾
d (
x) =
c, ¥Ñ Corollary
7.2.9 ª¾¦s¦b
n(
x),
m(
x)
F[
x] º¡¨¬
c =
n(
x)
. p(
x) +
m(
x)
. f (
x). µ¥¦¡¨âÃ伤W
c-1 . g(
x)
±o
g(x) |
= |
c-1n(x) . g(x) . p(x) + c-1m(x) . (f (x) . g(x)) |
|
|
= |
c-1n(x) . g(x) + m(x) . r(x) . p(x), |
|
©Ò¥H
p(
x) |
g(
x).
¤Ï¤§, Y¤wª¾ p(x) ¬O¤@Ó prime element §ÚÌnÃÒ©ú p(x) ¬O
irreducible. ¤]´N¬OÃÒ©úY
d (x) | p(x), «h d (x) = c ©Î
d (x) = c . p(x). µM¦Ó
d (x) | p(x) ªí¥Ü¦s¦b
r(x) F[x]
º¡¨¬
p(x) = r(x) . d (x), ¤]´N¬O»¡
p(x) | r(x) . d (x). ¬G¥Ñ
p(x) ¬O prime ªº°²³], §Ú̱o
p(x) | d (x) ©Î
p(x) | r(x).
·í
p(x) | d (x) ®É, ªí¥Ü¦s¦b
s(x) F[x] ¨Ï±o
d (x) = s(x) . p(x). ¥Ñì¥ý°²³]
p(x) = r(x) . d (x) ª¾
d (x) = (s(x) . r(x)) . d (x). ¤]´N¬O»¡
d (x) . (s(x) . r(x) - 1) = 0, §Q¥Î
F[x] ¨S¦³ zero divisor (Proposition 7.2.3) ¤Î d (x) 0, ª¾
s(x) . r(x) = 1, §Y s(x) ¬O unit. ¤]´N¬O»¡ s(x)
¬O¤@Ó±`¼Æ¦h¶µ¦¡ c, ¬G±o
d (x) = s(x) . p(x) = c . p(x). ·í
p(x) | r(x) ®É, ªí¥Ü¦s¦b
s(x) F[x] º¡¨¬
r(x) = s(x) . p(x). ¬G¥Ñ
p(x) = d (x) . r(x) = d (x) . (s(x) . p(x)) ±o
d (x) . s(x) = 1. ªí¥Ü d (x) ¬O F[x] ªº unit, §Y d (x) = c.
±q«e±´XÓ©w²z¬Ý¨Ó, ¤£Ãøµo²
ªº«Ü¦h«n©Ê½è³£¥i¥H±À¾É¨ì F[x]
¤W. ¤j®aÀ³¸Ó¤]·|²q´ú F[x] ¤]·|¦³©M
¬Û¦üªº°ß¤@¤À¸Ñ©w²z.
«e±´£¹L¦b½Í¤À¸Ñ®É§Ṳ́£·|§â unit ªº®t²§¯Ç¤J¦Ò¼, ³o´N¬O¬°¬Æ»ò§Ú̦b
¤¤½Í¦]¼Æ®É¥u¦Ò¼¥¿¼Æ. ¦b F[x] ¤¤Y d (x) ¬O f (x) ªº
divisor, §Y¦s¦b
h(x) F[x] ¨Ï±o
f (x) = d (x) . h(x), «h¹ï¥ô·N
F[x] ¤¤¤£µ¥©ó 0 ªº ±`¼Æ c ¦]¬°¨ä¬° F[x] ªº unit, ·íµM§Ú̪¾
c-1 . h(x) F[x]. ¦]¦¹¥Ñ
f (x) = (c . d (x)) . (c-1 . h(x)) ±o¨ì
c . d (x) ¤]¬O f (x) ªº divisor.
©Ò¥H¹ï©Ò¦³ªº
0c F, ±q¤À¸ÑªºÆ[ÂI§Ú̱N d (x) ©M
c . d (x) ¬Ý¦¨¬O f (x) ¤@¼Ëªº divisor. §ÚÌ»Ýn¤@Ó¤èªk¨Ó¿ï¨ú¤@Ó¾A·íªº
c . d (x) ¨Ó·í f (x) ªº divisor. ¤@¯ë²ßºD¤W§Ú̲ߺD¿ï¨ú c
¨Ï±o
c . d (x) ªº³Ì°ª¦¸¶µ«Y¼Æ¬° 1, ¦]¦¹¦³¥H¤Uªº©w¸q.
Definition 7.2.12
Y
f (
x)
F[
x] ¥B
f (
x) ªº³Ì°ª¦¸¶µ«Y¼Æ¬° 1 «hºÙ
f (
x) ¬°¤@Ó
monic polynomial.
¥H¤U¤@Ó Lemma §i¶D§ÚÌ¿ï¨ú monic polynomial ªº¦n³B.
Lemma 7.2.13
°²³]
p(
x),
q(
x)
F[
x] ³£¬O monic irreducible element ¥B
p(
x) |
q(
x), «h
p(
x) =
q(
x).
µý ©ú.
¥Ñ©ó
q(
x) ¬O irreducible,
q(
x) ªº divisor ¥u¯à¬O±`¼Æ
c ©Î
c . q(
x) ³oºØ§Î¦¡. ¬G¥Ñ
p(
x) ¤£¬O±`¼Æ (¦]°²³]¬O
irreducible) ¥B
p(
x) |
q(
x) ª¾¦s¦b
c F º¡¨¬
p(
x) =
c . q(
x). ¤£¹L¥Ñ©ó
p(
x),
q(
x) ³£¬O monic polynomial,
¥¦Ìªº³Ì°ª¦¸¶µ«Y¼Æ³£¬O 1. ¬G±o
c = 1, §Y
p(
x) =
q(
x).
²¦b§ÚÌ´N¨Ó¬Ý F[x] ¤Wªº°ß¤@¤À¸Ñ©Ê½èÀ³¸Ó¬O¬Æ»ò¼Ë¤l.
Theorem 7.2.14
°²³]
f (
x)
F[
x] ¥B
deg(
f (
x))
1, «h¦s¦b
c F ¥H¤Î
p1(
x),...,
pr(
x), ¨ä¤¤³o¨Ç
pi(
x) ¬O¬Û²§ªº monic irreducible
elements, º¡¨¬
f (
x) =
c . p1(
x)
n1 ... pr(
x)
nr,
ni ,
i {1,...,
r}.
¦pªG f (x) ¥i¥H¤À¸Ñ¦¨¥t¥ ªº§Î¦¡
f (x) = d . q1(x)m1 ... qs(x)ms, ¨ä¤¤ d F ¦Ó¥B³o¨Ç qi(x) ¬O¬Û²§ªº monic
irreducible elements, «h c = d, r = s ¥B¸g¹LÅÜ´«¶¶§Ç¥i±o
pi(x) = qi(x), ni = mi,
i {1,..., r}.
µý ©ú.
§Ú̧Q¥Î©M Theorem
7.1.8 Ãþ¦üªº¤èªk¨ÓÃÒ©ú. Theorem
7.1.8 ¥Î¨ì¤F¼Æ¾ÇÂk¯Çªk, ³o¸ÌÁöµM§Ú̽ͪº¤£¬O¾ã¼Æ,
¤£¹L¥Ñ©ó§Ú̦³ degree ³oӫܦnªº¤u¨ã±N
F[
x] ªº¤¸¯À°e¨ì¾ã¼Æ,
©Ò¥H§ÚÌ¥i¥H¹ï degree °µ induction.
º¥ý¨Ó¬Ý¦s¦b©Ê (¤]´N¬O f (x) ¥i¥H¼g¦¨©Òn¨Dªº§Î¦¡): ·í
deg(f (x)) = 1 ®É¥Ñ©ó f (x) = ax + b, ¨ä¤¤
0a F,
©Ò¥H§ÚÌ¥i¥H±N f (x) ¼g¦¨
a . (x + b . a-1). «ÜÅãµMªº
x + b . a-1 ¤£¥i¯à¼g¦¨¨âÓ degree ¤p©ó 1 ªº polynomial
ªº¼¿n, ©Ò¥H
x + b . a-1 ¬O¤@Ó monic irreducible element.
©Ò¥H¦b³o±¡ªp¦s¦b©Ê¬O¦¨¥ßªº. ±µµÛ°²³]¹ï©Ò¦³ degree ¤¶©ó 1 ©M n - 1
¶¡ªº polynomials ¦s¦b©Ê¬O¦¨¥ßªº. ²¦b¦Ò¼
deg(f (x)) = n ±¡ªp. ¦pªG f (x) ¬O irreducible ¥B¨ä³Ì°ª¦¸¶µ«Y¼Æ¬° a,
¨º»ò
a-1 . f (x) ·íµM¬O¤@Ó monic irreducible element, ©Ò¥H
f (x) = a . (a-1 . f (x)), ¦s¦b©Ê¦ÛµM¦¨¥ß. ¦pªG f (x) ¤£¬O
irreducible, «hª¾
f (x) = g(x) . h(x) ¨ä¤¤
g(x), h(x) F[x] ¥B
1deg(g(x)) < n ¤Î
1deg(h(x)) < n. ¬G§Q¥ÎÂk¯Ç°²³]ª¾
g(
x) =
c1 . p1(
x)
n1 ... pu(
x)
nu ©M
h(
x) =
c2 . (
x)
m1 ... (
x)
mv,
¨ä¤¤
pi(
x),
(
x) ³£¬O monic irreducible elements,
©Ò¥H±N¬Û¦Pªº monic irreducible elements ¦X¨Ö, ±oÃÒ
f (
x)
¤]¥i¥H¼g¦¨©Òn¨Dªº§Î¦¡.
±µ¤U¨Ó¬Ý°ß¤@©Ê: °²³]
deg(f (x)) = 1, ¥Ñ©ó f (x) = ax + b,
¨ä°ß¤@©Ê¦ÛµM¦¨¥ß. ±µµÛ°²³]°ß¤@©Ê¹ï©Ò¦³ degree ¤¶©ó 1 ©M n - 1
¶¡ªº polynomials ³£¦¨¥ß, ²¦b¦Ò¼
deg(f (x)) = n ªº±¡ªp. °²³]
f (x) = c . p1(x)n1 ... pr(x)nr = d . q1(x)m1 ... qs(x)ms,
¨ä¤¤
c,
d F,
pi(
x) ¬O¨â¨â¬Û²§,
qj(
x) ¤]¬O¨â¨â¬Û²§, ¦Ó¥B
pi(
x),
qj(
x) ³£¬O monic irreducible element. º¥ýÆ[¹î, ¥Ñ©ó
pi(
x),
qj(
x) ³£¬O monic, ©Ò¥H
c ©M
d À³¸Ó³£¬O
f (
x)
³Ì°ª¦¸¶µªº«Y¼Æ. ¤@Ó polynomial ªº³Ì°ª¦¸¶µÀ³¸Ó¬O°ß¤@ªº, ¬G±o
c =
d.
±µµÛ¥Ñ©ó
p1(
x) ¬O irreducible ©Ò¥H¥Ñ Proposition
7.2.11
ª¾¨ä¬° prime, ¬G¥Ñ
p1(
x) |
f (
x) =
cq1(
x)
m1 ... qs(
x)
ms ª¾¦s¦b¬YÓ
j {1,...,
s} º¡¨¬
p1(
x) |
qj(
x). ÅÜ´«¤@¤U¶¶§Ç§ÚÌ¥i¥H°²³]
p1(
x) |
q1(
x),
¬G§Q¥Î
p1(
x) ©M
q1(
x) ³£¬O monic irreducible element ¥H¤Î
Lemma
7.2.13 ª¾
p1(
x) =
q1(
x). ¦]¦¹§ÚÌ¥i±N
f (
x)
ªº¤À¸Ñ§ï¼g¦¨
f (x) = c . p1(x)n1 . p2(x)n2 ... pr(x)nr = c . p1(x)m1 . q2(x)m2 ... qs(x)ms.
±N¤W¦¡²¾¶µ¦A´£¥X
c . p1(
x), §ÚÌ¥i±o
c . p1(
x)
. p1(
x)
n1 - 1 . p2(
x)
n2 ... pr(
x)
nr -
p1(
x)
m1 - 1 . q2(
x)
m2 ... qs(
x)
ms = 0.
¥Ñ©ó
c . p1(
x)
0 ¥B
F[
x] ¬O
integral domain, §Ú̱o
p1(x)n1 - 1 . p2(x)n2 ... pr(x)nr - p1(x)m1 - 1 . q2(x)m2 ... qs(x)ms = 0.
²¥O
g(
x) =
p1(
x)
n1 - 1 . p2(
x)
n2 ... pr(
x)
nr. ¥Ñ©ó
deg(g(x)) = deg(f (x)) - deg(p1(x)) < deg(f (x)) = n
¥B
g(x) = p1(x)n1 - 1 . p2(x)n2 ... pr(x)nr = p1(x)m1 - 1 . q2(x)m2 ... qs(x)ms
¬O
g(
x) ªº¨âÓ¤À¸Ñ, ¬G§Q¥ÎÂk¯Çªk°²³]§Ú̦³
r =
s ¥B
p1(
x) =
q1(
x),...,
pr(
x) =
qr(
x) ¥H¤Î
n1 =
m1,
n2 =
m2,...,
nr =
mr, ¬G±oÃҰߤ@©Ê.
¤U¤@¶: Polynomials over the Integers
¤W¤@¶: ¤@¨Ç±`¨£ªº Rings
«e¤@¶: The Ring of Integers
Administrator
2005-06-18