next up previous
¤U¤@­¶: Polynomials over the Integers ¤W¤@­¶: ¤@¨Ç±`¨£ªº Rings «e¤@­¶: The Ring of Integers


Ring of Polynomials over a Field

¤j®a³£ª¾¹D¦³²z«Y¼Æªº¦h¶µ¦¡¦³©M¾ã¼Æ«ÜÃþ¦üªº©Ê½è, ´N¬O©Ò¿×ªº¾l¦¡©w²z. ¨Æ¹ê¤W³o­Ó©w²z¹ï«Y¼Æ¦b¤@¯ëªº field ªº¦h¶µ¦¡¤]¹ïªº. ¦b³o¤@¸`¤¤§Ú­Ì±N±´°Q³oºØ polynomial ring. ¤j®a·|µo²§Ú­Ì´X¥G¬O§â¤W¤@¸`¤¤¾ã¼Æªº¨º¤@®M²z½×§¹§¹¾ã¾ãªº·h¹L¨Ó.

¥O F ¬O¤@­Ó field. §Ú­Ì¦Ò¼¥Ñ©Ò¦³ªº«Y¼Æ¦b F ªº¦h¶µ¦¡

f (x) = a0 + a1x + ... + an - 1xn - 1 + anxn,    ai $\displaystyle \in$ F  $\displaystyle \forall$ i = 0,..., n

©Ò§Î¦¨ªº¶°¦X F[x]. §Ú­Ì«Ü¦ÛµMµ¹ F[x] ¤¤ªº¤¸¯À©w¸q¥H¤Uªº¥[ªk©M­¼ªk: ­Y f (x) = a0 + a1x ... + anxn ©M g(x) = b0 + b1x + ... + bmxm ¬O F[x] ¤¤ªº¨â¤¸¯À, ©w f (x) + g(x) = c0 + c1x + ... + crxr, ¨ä¤¤¹ï©Ò¦³ªº i $ \in$ {1,..., r}, ci = ai + bi ¥B r = max{m, n}. ¥t¥ §Ú­Ì©w f (x) . g(x) = d0 + d1x + ... + dm + nxm + n, ¨ä¤¤¹ï©Ò¦³ªº i $ \in$ {1,..., m + n},

di = a0 . bi + a1 . bi - 1 + ... + ai - 1 . b1 + ai . b0.

ª`·N³o¸Ì, ·í j > n ®É§Ú­Ì¥O aj = 0 ¥B ·í k > m ®É§Ú­Ì¥O bk = 0. ¨ä¹ê³o´N¬O§Ú­Ì¼ôª¾¤@¯ë¦h¶µ¦¡ªº¥[ªk»P­¼ªk: ·í¬Û¥[®É´N¬O±N¦P¦¸¶µªº«Y¼Æ¬Û¥[; ¬Û­¼´N¬O¦U¶µ¥ý®i¶«á¦A¦X¨Ö¦P¦¸¶µ.

¸g¥Ñ¤@µfªºÅçºâ§Ú­Ì¥i¥H±o¨ì F[x] ¬O¤@­Ó commutative ring with 1, ³o¸Ì§Ú­Ì´N²¤¥hÅçºâ¹Lµ¤F. ¤£¹L­n±j½Õ¤@¤U F[x] ³o­Ó ring ªº¥[ªk identity 0 ´N¬O 0 ¦h¶µ¦¡, ¤]´N¬O¦U¶µ«Y¼Æ³£¬O 0 (³o¸Ìªº 0 ¬O F ªº 0) ªº¦h¶µ¦¡. ¦Ó­¼ªkªº identity 1 ´N¬O 1 ³o¤@­Ó±`¼Æ¦h¶µ¦¡, ¤]´N¬O±`¼Æ¶µ¬° 1 (³o¸Ìªº 1 ¬O F ªº 1) ¨ä¥L¶µ«Y¼Æ³£¬O 0. ³q±`§Ú­ÌºÙ F[x] ¬° the ring of polynomials in x over F.

·í§Ú­Ì¸I¨ì¤@­Ó·sªº ring ®É, ­º¥ý·|°Ýªº¬O¥¦ªº zero divisor ©M unit ¦³­þ¨Ç? ³o¸Ì¥Ñ©ó§Ú­Ì³B²zªº¬O polynomial ring ¦³¤@­Ó¯S§O¦n¥Îªº¤u¨ã¨ÓÀ°§Ú­Ì, ´N¬O©Ò¿×ªº degree.

Definition 7.2.1   ­Y f (x) = a0 + a1x + ... + anxn $ \in$ F[x] ¥B an$ \ne$ 0, «hºÙ f (x) ªº degree ¬° n °O¬° deg(f (x)) = n.

ª`·NÁöµM 0 ¦h¶µ¦¡§Ú­Ì¬Ý¦¨¬O±`¼Æ¦h¶µ¦¡, ¤£¹L¥Ñ©w¸q¦]¬° 0 ¦h¶µ¦¡¨Ã§ä¤£¨ì¤£¬° 0 ªº«Y¼Æ, ©Ò¥H¹ï 0 ¦h¶µ¦¡§Ú­Ì¤£¯à»¡¥¦ªº degree ¬° 0. ³q±`§Ú­Ì´N¤£­q 0 ªº degree (¦³ªº®Ñ©w¸q deg(0) = - $ \infty$). ±µ¤U¨Ó§Ú­Ì¨Ó¬Ý degree ªº©Ê½è.

Lemma 7.2.2   ­Y f (x) ©M g(x) ³£¬O F[x] ¤¤ªº«D 0 ¦h¶µ¦¡, «h

deg(f (x) . g(x)) = deg(f (x)) + deg(g(x)).

µý ©ú. ­Y deg(f (x)) = n ¥B deg(g(x)) = m ¤]´N¬O»¡ f (x) = a0 + a1x + ... + anxn ¤Î g(x) = b0 + b1x + ... + bmxm, ¨ä¤¤ an$ \ne$ 0 ¥B bm$ \ne$ 0. ²¦Ò¼ f (x) . g(x) = $ \sum$ckxk, ¨ä¤¤ ck = $ \sum_{i+j=k}^{}$ai . bj. ­º¥ý§Ú­ÌÃÒ©ú·í k > n + m ®É ck = 0. ­Y i$ \le$n ¥B j$ \le$m, «h i + j$ \le$n + m. ¥Ñ¦¹ª¾·í k > n + m ®É­Y i + j = k, «h i > n ©Î j > m. ¤]´N¬O»¡ ai = 0 ©Î bj = 0. ¬Gª¾·í k > n + m ®É ck = 0. ¦Ó·í k = n + m ®É, ¦Ò¼ i + j = k §Ú­Ì¤]¥iª¾°ß¦³·í i = n ¥B j = m ®É ai$ \ne$ 0 ¥B bj$ \ne$ 0. ´«¥y¸Ü»¡ cn + m = an . bm. ¥Ñ©ó F ¬O¤@­Ó field, ©Ò¥H F ¨S¦³ zero divisor, ¬G¥Ñ an$ \ne$ 0 ¥B bm$ \ne$ 0 ¥i±o cn + m$ \ne$ 0. ´«¥y¸Ü»¡ deg(f (x) . g(x)) = n + m. $ \qedsymbol$

¥Ñ Lemma 7.2.2, §Ú­Ì°¨¤W¥i¥Hª¾¹D F[x] ªº zero divisor ©M unit ¦³­þ¨Ç.

Proposition 7.2.3   ¥O F ¬O¤@­Ó field.
  1. F[x] ¤¤¨S¦³ zero divisor, ´«¥y¸Ü»¡ F[x] ¬O¤@­Ó integral domain.
  2. F[x] ¤¤ªº unit ´N¬O©Ò¦³«D 0 ªº±`¼Æ.

µý ©ú. (1) ¥ô¨ú f (x), g(x) $ \in$ F[x] ¥B¬Ò¤£¬° 0. ­Y deg(f (x)) = n ¥B deg(g(x)) = m, «h¥Ñ Lemma 7.2.2 ª¾ deg(f (x) . g(x)) = n + m. ´«¥y¸Ü»¡, f (x) . g(x) ªº xn + m ¶µ«Y¼Æ¤£¬° 0. ¬Gª¾ f (x) . g(x) ¤£¬° 0 ¦h¶µ¦¡. ¬G±oÃÒ F[x] ¨S¦³ zero divisor.

(2) ­Y f (x) ¬O F[x] ¤¤ªº¤@­Ó unit, ¨Ì©w¸qª¾¦s¦b g(x) $ \in$ F[x] ¨Ï±o f (x) . g(x) = 1. ¦]¬° 1 ¬O±`¼Æ¦h¶µ¦¡¨ä degree ¬° 0, ¬G¥Ñ Lemma 7.2.2 ª¾ deg(f (x) . g(x)) = deg(f (x)) + deg(g(x)) = 0. ¤S deg(f (x))$ \ge$ 0 ¥B deg(g(x))$ \ge$ 0, ¬G±o deg(f (x)) = 0 ´«¥y¸Ü»¡ f (x) ¬O±`¼Æ¦h¶µ¦¡. ¤S 0 ¤£¥i¯à¬O unit, ¬G±o f (x) ¬O¤@­Ó«D 0 ªº±`¼Æ. ¤Ï¤§, ­Y f (x) = c ¬O¤@­Ó«D 0 ªº±`¼Æ, ¤]´N¬O c $ \in$ F ¥B c$ \ne$ 0. ¦] F ¬O¤@­Ó field, ¦b F ¤¤¥i¥H§ä¨ì c ªº inverse c-1. ¬G¥O g(x) = c-1 $ \in$ F[x], «h f (x) . g(x) = 1. ¬Gª¾ f (x) = c ¬O¤@­Ó unit. $ \qedsymbol$

±µ¤U¨Ó§Ú­Ì¨Ó¬Ý polynomial ring ªº¾l¦¡©w²z.

Theorem 7.2.4 (Euclid's Algorithm)   ­Y F ¬O¤@­Ó field, µ¹©w¨â polynomials f (x), g(x) $ \in$ F[x], ¨ä¤¤ g(x)$ \ne$ 0, «h¦s¦b h(x), r(x) $ \in$ F[x] º¡¨¬ f (x) = h(x) . g(x) + r(x), ¨ä¤¤ r(x) = 0 ©Î deg(r(x)) < deg(g(x)).

µý ©ú. ­º¥ý­nª`·N, ³o¸Ìªº¾l¦¡ r(x) ¥Ñ©ó¥i¯à¬O 0, ¦Ó 0 ¤S¨S¦³ degree, ©Ò¥H§Ú­Ì¤£¯à¥u»¡ deg(r(x)) < deg(g(x)), ¦Ó¥²¶·¥[¤W r(x) = 0 ³o­Ó¥i¯à©Ê.

§Ú­Ì§Q¥Î©M Theorem 7.1.1 ¬Û¦üªºÃÒ©ú¦Ò¼ W = {f (x) - l (x) . g(x) | l (x) $ \in$ F[x]} ³o¤@­Ó¶°¦X. ¦pªG 0 $ \in$ W, ¤]´N¬O»¡¦s¦b h(x) $ \in$ F[x] ¨Ï±o f (x) - h(x) . g(x) = 0, ¬G±oÃÒ r(x) = 0. ¦pªG 0 $ \not\in$W, «h¥O r(x) $ \in$ W ¬O W ¤¤ degree ³Ì¤pªº polynomial. °²³] deg(r(x)) = m ¥B deg(g(x)) = n, §Ú­Ì·Q¥Î¤ÏÃÒªkÃÒ©ú m < n. ¦pªG m$ \ge$n, °²³] r(x) ªº³Ì°ª¦¸ xm ¶µªº«Y¼Æ¬° a, ¦Ó g(x) ªº³Ì°ª¦¸ xn ¶µ«Y¼Æ¬° b. ¥Ñ©ó b $ \in$ F ¥B b$ \ne$ 0, ¦Ò¼ s(x) = r(x) - ((a . b-1)xm - n) . g(x) ³o­Ó¦h¶µ¦¡. ¥Ñ©ó r(x) ©M ((a . b-1)xm - n) . g(x) ªº³Ì°ª¦¸ xm ªº«Y¼Æ¬Ò¬° a, ¬Gª¾ deg(s(x)) < m = deg(r(x)). ¥t¥ ¥Ñ°²³] r(x) $ \in$ W ª¾¦s¦b l (x) $ \in$ F[x] ¨Ï±o r(x) = f (x) - l (x) . g(x). ¬G±o

s(x) = f (x) - l (x) . g(x) - ((a . b-1)xm - n) . g(x) = f (x) - (l (x) + (a . b-1)xm - n) . g(x) $\displaystyle \in$ W.

¤]´N¬O»¡ s(x) ¬O W ¤¤¤@­Ó¤ñ r(x) degree ¤pªº polynomial, ¦¹©M r(x) ¬O W ¤¤ degree ³Ì¤pªº°²³]¬Û¥Ù¬Þ. ¬G±o m < n ¤]´N¬O»¡¦s¦b h(x) $ \in$ F[x] ¨Ï±o r(x) = f (x) - h(x) . g(x) ¥B deg(r(x)) < deg(g(x). ¬G±oÃÒ¥»©w²z. $ \qedsymbol$

Remark 7.2.5   ³o¸Ì­n±j½Õ¤@¤U, ¦b Theorem 7.2.4 ªºµý©ú¤¤§Ú­Ì¥Î¨ì¤F F ¬O¤@­Ó field ªº©Ê½è (§Y g(x) ªº³Ì°ª¦¸«Y¼Æ b ªº inverse b-1 ¦s¦b). ©Ò¥H Theorem 7.2.4 ¨Ã¤£¯à®M¥Î¨ì«Y¼Æ¬°¤@¯ëªº ring ªº polynomials ¤W. ¨Æ¹ê¤W¦b $ \mathbb {Z}$[x] ¤¤´N¨S¦³¾l¦¡©w²z. ¨Ò¦p¦Ò¼ f (x) = x2, g(x) = 2x §Ú­Ì´N¨S¿ìªk§ä¨ì¾ã«Y¼Æªº¦h¶µ¦¡ h(x) ¨Ï±o f (x) - h(x) . g(x) = 0 ©Î¬O deg(f (x) - h(x) . g(x)) < deg(g(x)).

§Ú­Ì´¿§Q¥Î¾ã¼Æªº¾l¼Æ©w²z (Theorem 7.1.1) ÃÒ±o $ \mathbb {Z}$ ¤¤ªº ideal ¬Ò¬O principle ideal (Theorem 7.1.2). ¦P¼Ëªº§Q¥Î¾l¦¡©w²z (Theorem 7.2.4), §Ú­Ì¥i±o¥H¤Uªº©w²z.

Theorem 7.2.6   ­Y F ¬O¤@­Ó field, «h F[x] ¤¤ªº ideal ³£¬O principle ideal.

µý ©ú. ¥ô¨ú F[x] ªº¤@­Ó ideal, I. §Ú­Ì§Æ±æ¦b I ¤¤§ä¨ì¤@¤¸¯À g(x) ¨Ï±o $ \bigl($g(x)$ \bigr)$ = I. ¥O g(x) ¬O I ¤¤ degree ³Ì¤pªº polynomial, §Ú­Ì§Æ±æÃÒ±o $ \bigl($g(x)$ \bigr)$ = I.

­º¥ý¥Ñ©ó g(x) $ \in$ I ©Ò¥H·íµM $ \bigl($g(x)$ \bigr)$ $ \subseteq$ I. ¤Ï¤§, ­nÃÒ©ú I $ \subseteq$ $ \bigl($g(x)$ \bigr)$ ¤]´N¬O»¡¥ô¨ú f (x) $ \in$ I ³£­n§ä¨ì h(x) $ \in$ F[x] ¨Ï±o f (x) = h(x) . g(x). §Q¥Î Theorem 7.2.4 §Ú­Ìª¾¹D¦s¦b h(x), r(x) $ \in$ F[x] ¨Ï±o f (x) = h(x) . g(x) + r(x) ¨ä¤¤ r(x) = 0 ©Î deg(r(x)) < deg(g(x)). µM¦Ó g(x), f (x) $ \in$ I, ¬G±o r(x) = f (x) - h(x) . g(x) $ \in$ I. ¦pªG r(x)$ \ne$ 0, ªí¥Ü r(x) ¬O I ¤¤¤@­Ó¤ñ g(x) degree ÁÙ¤pªº polynomial, ³o©M·íªì g(x) ªº¿ï¨ú¬Û¥Ù¬Þ. ¬Gª¾ r(x) = 0, §Y f (x) = h(x) . g(x) $ \in$ $ \bigl($g(x)$ \bigr)$. $ \qedsymbol$

±µ¤U¨Ó­n½Í F[x] ¤W¦h¶µ¦¡ªº¤À¸Ñ. ©Ò¥HÁÙ¬Oµ¹¦]¦¡, ¤½¦]¦¡©M³Ì¤j¤½¦]¦¡¤U¤@­Ó©w¸q.

Definition 7.2.7   ¥O f (x), g(x) $ \in$ F[x].
  1. ­Y d (x) $ \in$ F[x] ¥B¦s¦b h(x) $ \in$ F[x] ¨Ï±o f (x) = h(x) . d (x), «hºÙ d (x) ¬O f (x) ªº¤@­Ó divisor, °O°µ d (x) | f (x).
  2. ­Y l (x) $ \in$ F[x], ¥B l (x) | f (x) ¤Î l (x) | g(x), «hºÙ l (x) ¬° f (x), g(x) ªº common divisor.
  3. ­Y d (x) $ \in$ F[x] ¬O f (x), g(x) ªº common divisor ¤¤ degree ³Ì¤jªº polynomial, «hºÙ d (x) ¬° f (x), g(x) ªº greatest common divisor.

­nª`·N³o¸Ì greatest common divisor ¨Ã¤£°ß¤@. ¦³ªº®Ñ·|©w greatest common divisor ¬O©Ò¦³ common divisor ¤¤ degree ³Ì¤j¥B³Ì°ª¦¸«Y¼Æ¬° 1 ªº polynomial, ­Y¦b¦¹©w¸q¤§¤U greatest common divisor ´N°ß¤@¤F.

¤@¯ë¥i¥H§Q¥Î©Ò¿×ªºÁÓÂà¬Û°£ªk±N¨â­Ó¦h¶µ¦¡ªº greatest common divisor ¨D¥X¨Ó, ¦b³o¸Ì§Ú­Ì±N§Q¥Î Theorem 7.2.6 §ä¨ì greatest common divisor ¨Ã±o¨ì¨ä°ò¥»©Ê½è.

Proposition 7.2.8   µ¹©w f (x), g(x) $ \in$ F[x], «h¦s¦b d (x) $ \in$ F[x] º¡¨¬ $ \bigl($d (x)$ \bigr)$ = $ \bigl($f (x)$ \bigr)$ + $ \bigl($g(x)$ \bigr)$ ¥B d (x) ¬° f (x), g(x) ªº greatest common divisor

µý ©ú. ¥Ñ Theorem 7.1.2 ª¾¦s¦b d (x) $ \in$ F[x] ¨Ï±o $ \bigl($d (x)$ \bigr)$ = $ \bigl($f (x)$ \bigr)$ + $ \bigl($g(x)$ \bigr)$. ±µµÛ§Ú­Ì­nÃÒ©ú³o­Ó d (x) $ \in$ F[x] ¬O f (x), g(x) ªº greatest common divisor. ­º¥ý·íµM¬O­nÃÒ d (x) ¬O f (x), g(x) ªº common divisor. µM¦Ó¦] f (x) $ \in$ $ \bigl($f (x)$ \bigr)$ $ \subseteq$ $ \bigl($f (x)$ \bigr)$ + $ \bigl($g(x)$ \bigr)$ = $ \bigl($d (x)$ \bigr)$, ¬Gª¾¦s¦b h(x) $ \in$ F[x] ¨Ï±o f (x) = h(x) . d (x). ¤]´N¬O»¡ d (x) | f (x). ¦P²z, ¥Ñ g(x) $ \in$ $ \bigl($d (x)$ \bigr)$ ¥i±o d (x) | g(x). ¬Gª¾ d (x) ¬O f (x), g(x) ªº common divisor.

¨º¬°¬Æ»ò d (x) ·|¬O f (x), g(x) ªº common divisor ¤¤ degree ³Ì¤jªº©O? ¥Ñ©ó d (x) $ \in$ $ \bigl($d (x)$ \bigr)$ = $ \bigl($f (x)$ \bigr)$ + $ \bigl($g(x)$ \bigr)$, §Ú­Ìª¾¹D¦s¦b m(x), n(x) $ \in$ F[x] ¨Ï±o d (x) = m(x) . f (x) + n(x) . g(x). µM¦Ó­Y l (x) ¬O f (x), g(x) ªº common divisor, §Y l (x) | f (x) ¥B l (x) | g(x), ª¾¦s¦b r(x), s(x) $ \in$ F[x] ¨Ï±o f (x) = r(x) . l (x) ¥B g(x) = s(x) . l (x). ¦]¦¹±o

d (x) = m(x) . (r(x) . l (x)) + n(x) . (s(x) . l (x)) = (m(x) . r(x) + n(x) . s(x)) . l (x).

¤]´N¬O»¡ l (x) | d (x). ©Ò¥Hª¾ d (x) ¬O©Ò¦³ f (x), g(x) ªº common divisor ¤¤ degree ³Ì¤jªº. $ \qedsymbol$

Proposition 7.2.8 ¤£¥u§i¶D§Ú­Ì¦p¦ó§ä¨ì greatest common divisor, ¨Æ¹ê¤W¦bÃÒ©ú¤¤§Ú­Ì¤]ÃÒ±o greatest common divisor ªº¨â­Ó­«­n©Ê½è.

Corollary 7.2.9   ¥O f (x), g(x) $ \in$ F[x] ¥B d (x) ¬° f (x), g(x) ªº greatest common divisor, «h d (x) ²Å¦X¥H¤U¨â©Ê½è:
  1. ¦s¦b m(x), n(x) $ \in$ F[x] º¡¨¬ d (x) = m(x) . f (x) + n(x) . g(x).
  2. °²³] l (x) | f (x) ¥B l (x) | g(x), «h l (x) | d (x).

¤@¯ë¦b¤@­Ó ring ¤¤¤¸¯Àªº¤À¸Ñ, §Ú­Ì¬O¤£±N unit ¦C¤J¦Ò¼. ¨Ò¦p¦b $ \mathbb {Z}$ ¤¤ªº¤À¸Ñ§Ú­Ì³£¤£±N 1 ©M -1 ¦C¬°¦]¼Æ¨Ó¦Ò¼. ¦b F[x] ¤¤ªº units ¬O©Ò¦³«D 0 ªº±`¼Æ¦h¶µ¦¡ (Proposition 7.2.3), ©Ò¥H§Ú­Ì¤]¤£¦Ò¼¥¦­Ì¬°¯u¥¿ªº divisor. ¦]¦¹§Ú­Ì¦³¥H¤U¤£¥i¤À¸Ñ¦h¶µ¦¡ (irreducible element) ªº©w¸q.

Definition 7.2.10   ¦Ò¼ F[x] ¤¤ªº¤¸¯À p(x).
  1. ­Y¹ï¥ô·Nº¡¨¬ d (x) | p(x) ªº d (x) $ \in$ F[x], ¬Ò¦³ d (x) = c ©Î d (x) = c . p(x), ¨ä¤¤ 0$ \ne$c $ \in$ F, «hºÙ p(x) ¬O¤@­Ó irreducible element.
  2. ­Y¹ï¥ô·Nº¡¨¬ p(x) | f (x) . g(x) ªº f (x), g(x) $ \in$ F[x] ¬Ò¦³ p(x) | f (x) ©Î p(x) | g(x), «hºÙ p(x) ¬O¤@­Ó prime element.

²³æ¨Ó»¡¤@­Ó irreducible element ªí¥Ü¥¦¤£¥i¥H¼g¦¨¨â­Ó degree ¤ñ¥¦¤pªº polynomial ªº­¼¿n. «ÜÅãµM irreducible ©M prime ³o¨âºØ©w¸q¬O¤£¤@¼Ëªº, ¤£¹L¤U¤@­Ó©w²z§i¶D§Ú­Ì¦b F[x] ¤¤³o¨âºØ©w¸qªº polynomial ¬O¬Û¦Pªº.

Proposition 7.2.11   ¦b F[x] ¤¤­Y p(x) ¬O¤@­Ó irreducible element, «h p(x) ¬O¤@­Ó prime element. ¤Ï¤§, ­Y p(x) ¬O¤@­Ó prime element, «h p(x) ¬O¤@­Ó irreducible element.

µý ©ú. ­º¥ý§Ú­ÌÃÒ­Y p(x) ¬O irreducible «h p(x) ¬O prime. ¤]´N¬O»¡°²³]¤wª¾ p(x) ¬O irreducible. ¥ô¨ú p(x) | f (x) . g(x) §Ú­Ì­nÃÒ©ú: p(x) | f (x) ©Î p(x) | g(x). µM¦Ó p(x) | f (x) . g(x) ªí¥Ü¦s¦b r(x) $ \in$ F[x] ¨Ï±o f (x) . g(x) = r(x) . p(x). ¦pªG p(x) | f (x) ¨º»ò´N±o¨ì§Ú­Ì­nÃÒªº, ©Ò¥H§Ú­Ì¥u­n°Q½× p(x)$ \nmid$f (x) ªº±¡ªp. ¦¹®É§Ú­Ì¦Ò¼ p(x), f (x) ªº greatest common divisor ¥O¤§¬° d (x). ¥Ñ©ó d (x) | p(x) ¬G¥Ñ p(x) ¬O irreducible ªº°²³]ª¾ d (x) = c ©Î d (x) = c . p(x), ¨ä¤¤ 0$ \ne$c $ \in$ F. µM¦Ó d (x) ¤£¥i¯àµ¥©ó c . p(x), §_«h¥Ñ d (x) ¬O p(x), f (x) ªº common divisor ª¾ p(x) = c-1 . d (x) | f (x) (ª`·N c ¬O F[x] ªº unit). ¦¹©M p(x)$ \nmid$f (x) ¥Ù¬Þ. ¦]¦¹ª¾ d (x) = c, ¥Ñ Corollary 7.2.9 ª¾¦s¦b n(x), m(x) $ \in$ F[x] º¡¨¬ c = n(x) . p(x) + m(x) . f (x). µ¥¦¡¨âÃä­¼¤W c-1 . g(x) ±o
g(x) = c-1$\displaystyle \bigl($n(x) . g(x)$\displaystyle \bigr)$ . p(x) + c-1$\displaystyle \bigl($m(x) . (f (x) . g(x))$\displaystyle \bigr)$  
  = c-1$\displaystyle \bigl($n(x) . g(x) + m(x) . r(x)$\displaystyle \bigr)$ . p(x),  

©Ò¥H p(x) | g(x).

¤Ï¤§, ­Y¤wª¾ p(x) ¬O¤@­Ó prime element §Ú­Ì­nÃÒ©ú p(x) ¬O irreducible. ¤]´N¬OÃÒ©ú­Y d (x) | p(x), «h d (x) = c ©Î d (x) = c . p(x). µM¦Ó d (x) | p(x) ªí¥Ü¦s¦b r(x) $ \in$ F[x] º¡¨¬ p(x) = r(x) . d (x), ¤]´N¬O»¡ p(x) | r(x) . d (x). ¬G¥Ñ p(x) ¬O prime ªº°²³], §Ú­Ì±o p(x) | d (x) ©Î p(x) | r(x). ·í p(x) | d (x) ®É, ªí¥Ü¦s¦b s(x) $ \in$ F[x] ¨Ï±o d (x) = s(x) . p(x). ¥Ñ­ì¥ý°²³] p(x) = r(x) . d (x) ª¾ d (x) = (s(x) . r(x)) . d (x). ¤]´N¬O»¡ d (x) . (s(x) . r(x) - 1) = 0, §Q¥Î F[x] ¨S¦³ zero divisor (Proposition 7.2.3) ¤Î d (x)$ \ne$ 0, ª¾ s(x) . r(x) = 1, §Y s(x) ¬O unit. ¤]´N¬O»¡ s(x) ¬O¤@­Ó±`¼Æ¦h¶µ¦¡ c, ¬G±o d (x) = s(x) . p(x) = c . p(x). ·í p(x) | r(x) ®É, ªí¥Ü¦s¦b s(x) $ \in$ F[x] º¡¨¬ r(x) = s(x) . p(x). ¬G¥Ñ p(x) = d (x) . r(x) = d (x) . (s(x) . p(x)) ±o d (x) . s(x) = 1. ªí¥Ü d (x) ¬O F[x] ªº unit, §Y d (x) = c. $ \qedsymbol$

±q«e­±´X­Ó©w²z¬Ý¨Ó, ¤£Ãøµo² $ \mathbb {Z}$ ªº«Ü¦h­«­n©Ê½è³£¥i¥H±À¾É¨ì F[x] ¤W. ¤j®aÀ³¸Ó¤]·|²q´ú F[x] ¤]·|¦³©M $ \mathbb {Z}$ ¬Û¦üªº°ß¤@¤À¸Ñ©w²z. «e­±´£¹L¦b½Í¤À¸Ñ®É§Ú­Ì¤£·|§â unit ªº®t²§¯Ç¤J¦Ò¼, ³o´N¬O¬°¬Æ»ò§Ú­Ì¦b $ \mathbb {Z}$ ¤¤½Í¦]¼Æ®É¥u¦Ò¼¥¿¼Æ. ¦b F[x] ¤¤­Y d (x) ¬O f (x) ªº divisor, §Y¦s¦b h(x) $ \in$ F[x] ¨Ï±o f (x) = d (x) . h(x), «h¹ï¥ô·N F[x] ¤¤¤£µ¥©ó 0 ªº ±`¼Æ c ¦]¬°¨ä¬° F[x] ªº unit, ·íµM§Ú­Ìª¾ c-1 . h(x) $ \in$ F[x]. ¦]¦¹¥Ñ f (x) = (c . d (x)) . (c-1 . h(x)) ±o¨ì c . d (x) ¤]¬O f (x) ªº divisor. ©Ò¥H¹ï©Ò¦³ªº 0$ \ne$c $ \in$ F, ±q¤À¸ÑªºÆ[ÂI§Ú­Ì±N d (x) ©M c . d (x) ¬Ý¦¨¬O f (x) ¤@¼Ëªº divisor. §Ú­Ì»Ý­n¤@­Ó¤èªk¨Ó¿ï¨ú¤@­Ó¾A·íªº c . d (x) ¨Ó·í f (x) ªº divisor. ¤@¯ë²ßºD¤W§Ú­Ì²ßºD¿ï¨ú c ¨Ï±o c . d (x) ªº³Ì°ª¦¸¶µ«Y¼Æ¬° 1, ¦]¦¹¦³¥H¤Uªº©w¸q.

Definition 7.2.12   ­Y f (x) $ \in$ F[x] ¥B f (x) ªº³Ì°ª¦¸¶µ«Y¼Æ¬° 1 «hºÙ f (x) ¬°¤@­Ó monic polynomial.

¥H¤U¤@­Ó Lemma §i¶D§Ú­Ì¿ï¨ú monic polynomial ªº¦n³B.

Lemma 7.2.13   °²³] p(x), q(x) $ \in$ F[x] ³£¬O monic irreducible element ¥B p(x) | q(x), «h p(x) = q(x).

µý ©ú. ¥Ñ©ó q(x) ¬O irreducible, q(x) ªº divisor ¥u¯à¬O±`¼Æ c ©Î c . q(x) ³oºØ§Î¦¡. ¬G¥Ñ p(x) ¤£¬O±`¼Æ (¦]°²³]¬O irreducible) ¥B p(x) | q(x) ª¾¦s¦b c $ \in$ F º¡¨¬ p(x) = c . q(x). ¤£¹L¥Ñ©ó p(x), q(x) ³£¬O monic polynomial, ¥¦­Ìªº³Ì°ª¦¸¶µ«Y¼Æ³£¬O 1. ¬G±o c = 1, §Y p(x) = q(x). $ \qedsymbol$

²¦b§Ú­Ì´N¨Ó¬Ý F[x] ¤Wªº°ß¤@¤À¸Ñ©Ê½èÀ³¸Ó¬O¬Æ»ò¼Ë¤l.

Theorem 7.2.14   °²³] f (x) $ \in$ F[x] ¥B deg(f (x))$ \ge$1, «h¦s¦b c $ \in$ F ¥H¤Î p1(x),..., pr(x), ¨ä¤¤³o¨Ç pi(x) ¬O¬Û²§ªº monic irreducible elements, º¡¨¬

f (x) = c . p1(x)n1 ... pr(x)nr,    ni $\displaystyle \in$ $\displaystyle \mathbb {N}$,$\displaystyle \forall$i $\displaystyle \in$ {1,..., r}.

¦pªG f (x) ¥i¥H¤À¸Ñ¦¨¥t¥ ªº§Î¦¡ f (x) = d . q1(x)m1 ... qs(x)ms, ¨ä¤¤ d $ \in$ F ¦Ó¥B³o¨Ç qi(x) ¬O¬Û²§ªº monic irreducible elements, «h c = d, r = s ¥B¸g¹LÅÜ´«¶¶§Ç¥i±o pi(x) = qi(x), ni = mi, $ \forall$ i $ \in$ {1,..., r}.

µý ©ú. §Ú­Ì§Q¥Î©M Theorem 7.1.8 Ãþ¦üªº¤èªk¨ÓÃÒ©ú. Theorem 7.1.8 ¥Î¨ì¤F¼Æ¾ÇÂk¯Çªk, ³o¸ÌÁöµM§Ú­Ì½Íªº¤£¬O¾ã¼Æ, ¤£¹L¥Ñ©ó§Ú­Ì¦³ degree ³o­Ó«Ü¦nªº¤u¨ã±N F[x] ªº¤¸¯À°e¨ì¾ã¼Æ, ©Ò¥H§Ú­Ì¥i¥H¹ï degree °µ induction.

­º¥ý¨Ó¬Ý¦s¦b©Ê (¤]´N¬O f (x) ¥i¥H¼g¦¨©Ò­n¨Dªº§Î¦¡): ·í deg(f (x)) = 1 ®É¥Ñ©ó f (x) = ax + b, ¨ä¤¤ 0$ \ne$a $ \in$ F, ©Ò¥H§Ú­Ì¥i¥H±N f (x) ¼g¦¨ a . (x + b . a-1). «ÜÅãµMªº x + b . a-1 ¤£¥i¯à¼g¦¨¨â­Ó degree ¤p©ó 1 ªº polynomial ªº­¼¿n, ©Ò¥H x + b . a-1 ¬O¤@­Ó monic irreducible element. ©Ò¥H¦b³o±¡ªp¦s¦b©Ê¬O¦¨¥ßªº. ±µµÛ°²³]¹ï©Ò¦³ degree ¤¶©ó 1 ©M n - 1 ¶¡ªº polynomials ¦s¦b©Ê¬O¦¨¥ßªº. ²¦b¦Ò¼ deg(f (x)) = n ±¡ªp. ¦pªG f (x) ¬O irreducible ¥B¨ä³Ì°ª¦¸¶µ«Y¼Æ¬° a, ¨º»ò a-1 . f (x) ·íµM¬O¤@­Ó monic irreducible element, ©Ò¥H f (x) = a . (a-1 . f (x)), ¦s¦b©Ê¦ÛµM¦¨¥ß. ¦pªG f (x) ¤£¬O irreducible, «hª¾ f (x) = g(x) . h(x) ¨ä¤¤ g(x), h(x) $ \in$ F[x] ¥B 1$ \le$deg(g(x)) < n ¤Î 1$ \le$deg(h(x)) < n. ¬G§Q¥ÎÂk¯Ç°²³]ª¾

g(x) = c1 . p1(x)n1 ... pu(x)nu ©M h(x) = c2 . $\displaystyle \tilde{p_1}$(x)m1 ... $\displaystyle \tilde{p_v}$(x)mv,

¨ä¤¤ pi(x), $ \tilde{p_j}$(x) ³£¬O monic irreducible elements, ©Ò¥H±N¬Û¦Pªº monic irreducible elements ¦X¨Ö, ±oÃÒ f (x) ¤]¥i¥H¼g¦¨©Ò­n¨Dªº§Î¦¡.

±µ¤U¨Ó¬Ý°ß¤@©Ê: °²³] deg(f (x)) = 1, ¥Ñ©ó f (x) = ax + b, ¨ä°ß¤@©Ê¦ÛµM¦¨¥ß. ±µµÛ°²³]°ß¤@©Ê¹ï©Ò¦³ degree ¤¶©ó 1 ©M n - 1 ¶¡ªº polynomials ³£¦¨¥ß, ²¦b¦Ò¼ deg(f (x)) = n ªº±¡ªp. °²³]

f (x) = c . p1(x)n1 ... pr(x)nr = d . q1(x)m1 ... qs(x)ms,

¨ä¤¤ c, d $ \in$ F, pi(x) ¬O¨â¨â¬Û²§, qj(x) ¤]¬O¨â¨â¬Û²§, ¦Ó¥B pi(x), qj(x) ³£¬O monic irreducible element. ­º¥ýÆ[¹î, ¥Ñ©ó pi(x), qj(x) ³£¬O monic, ©Ò¥H c ©M d À³¸Ó³£¬O f (x) ³Ì°ª¦¸¶µªº«Y¼Æ. ¤@­Ó polynomial ªº³Ì°ª¦¸¶µÀ³¸Ó¬O°ß¤@ªº, ¬G±o c = d. ±µµÛ¥Ñ©ó p1(x) ¬O irreducible ©Ò¥H¥Ñ Proposition 7.2.11 ª¾¨ä¬° prime, ¬G¥Ñ p1(x) | f (x) = cq1(x)m1 ... qs(x)ms ª¾¦s¦b¬Y­Ó j $ \in$ {1,..., s} º¡¨¬ p1(x) | qj(x). ÅÜ´«¤@¤U¶¶§Ç§Ú­Ì¥i¥H°²³] p1(x) | q1(x), ¬G§Q¥Î p1(x) ©M q1(x) ³£¬O monic irreducible element ¥H¤Î Lemma 7.2.13 ª¾ p1(x) = q1(x). ¦]¦¹§Ú­Ì¥i±N f (x) ªº¤À¸Ñ§ï¼g¦¨

f (x) = c . p1(x)n1 . p2(x)n2 ... pr(x)nr = c . p1(x)m1 . q2(x)m2 ... qs(x)ms.

±N¤W¦¡²¾¶µ¦A´£¥X c . p1(x), §Ú­Ì¥i±o

c . p1(x) . $\displaystyle \bigl($p1(x)n1 - 1 . p2(x)n2 ... pr(x)nr - p1(x)m1 - 1 . q2(x)m2 ... qs(x)ms$\displaystyle \bigr)$ = 0.

¥Ñ©ó c . p1(x)$ \ne$ 0 ¥B F[x] ¬O integral domain, §Ú­Ì±o

p1(x)n1 - 1 . p2(x)n2 ... pr(x)nr - p1(x)m1 - 1 . q2(x)m2 ... qs(x)ms = 0.

²¥O g(x) = p1(x)n1 - 1 . p2(x)n2 ... pr(x)nr. ¥Ñ©ó

deg(g(x)) = deg(f (x)) - deg(p1(x)) < deg(f (x)) = n

¥B

g(x) = p1(x)n1 - 1 . p2(x)n2 ... pr(x)nr = p1(x)m1 - 1 . q2(x)m2 ... qs(x)ms

¬O g(x) ªº¨â­Ó¤À¸Ñ, ¬G§Q¥ÎÂk¯Çªk°²³]§Ú­Ì¦³ r = s ¥B p1(x) = q1(x),..., pr(x) = qr(x) ¥H¤Î n1 = m1, n2 = m2,..., nr = mr, ¬G±oÃҰߤ@©Ê. $ \qedsymbol$


next up previous
¤U¤@­¶: Polynomials over the Integers ¤W¤@­¶: ¤@¨Ç±`¨£ªº Rings «e¤@­¶: The Ring of Integers
Administrator 2005-06-18