next up previous
�U�@��: p-group ���ʽ� �W�@��: p-Group �e�@��: p-Group

Conjugation as a group action

�^�U�@�U�ڭ̴����L�Y�T�w x $ \in$ G, ����N�� g $ \in$ G, g . x . g-1 �٬� x ���@�� conjugation. �ƹ�W�o�O G �� S = G ���@�� group action.

�Y G �O�@�� group. �O S = G, �Ӷȧ� S �ݦ��O�@�Ӷ��X. �Ҽ{ G �� S ���@�Φp�U: ����N�� a $ \in$ G, x $ \in$ S, �ڭ̩w�q a*x = a . x . a-1.

�ڭ̭n�ҩ��o�� (G, S,*) �O�@�� group action. �����ˬd (Act1). �Y a $ \in$ G, x $ \in$ S, �h a*x = a . x . a-1. �] a, x, a-1 �Ҧb G ���� G �O�@�� group, �G a . x . a-1 $ \in$ G = S. �o�� a*x $ \in$ S. �A�Ӧ] e*x = e . x . e-1 = x, �G�� (Act2) �]�ŦX. �̫�Y a, b $ \in$ G, x $ \in$ S, �h

a*(b*x) = a*(b . x . b-1) = a . (b . x . b-1) . a-1,

�M��

(a . b)*x = (a . b) . x . (a . b)-1 = (a . b) . x . (b-1 . a-1).

�G�ѵ��X�v�� a*(b*x) = (a . b)*x, �o�� (Act3).

�b�o�� action ���] S = G, �G�۵M�� | S| = | G|. �{�b�Ӭ� S0 �O����? �өw�q�Y x $ \in$ S0 ���ܹ�Ҧ��� g $ \in$ G �Ҧ� g*x = x. �]�N�O��� x, ����N�� g $ \in$ G, �Ҷ��ŦX g . x . g-1 = x. �Ѧ����o g . x = x . g$ \forall$ g $ \in$ G. ���y�ܻ� S0 �������һݩM�Ҧ� G ���������i�洫. �Ϥ��Y x $ \in$ S �i�H�M G ���Ҧ������洫����, �h

g*x = g . x . g-1 = x . g . g-1 = x,

�]�N�O�� x $ \in$ S0.

�p�G�j�a�����Ѫ���, �ڭ̴��b 1.4 �`�����гo�˪������Ҧ������X Z(G) �٬� G �� center, �B�Q�� Lemma 1.5.1 �����L Z(G) �O�@�� G �� subgroup. �`��, �ڭ��ұo�F

S0 = Z(G) = {x $\displaystyle \in$ G | g . x = x . g$\displaystyle \forall$ g $\displaystyle \in$ G}. (4.6)

�̫�ڭ��٬O�n�j�զ]�w�� e $ \in$ Z(G), �G��

| S0|$\displaystyle \ge$1. (4.7)


next up previous
�U�@��: p-group ���ʽ� �W�@��: p-Group �e�@��: p-Group
Administrator 2005-06-18