若 G 是一個 group. 令 S = G, 而僅把 S 看成是一個集合. 考慮 G 對 S 的作用如下: 對任意的 a G, x S, 我們定義 a*x = a . x . a-1.
我們要證明這種 (G, S,*) 是一個 group action. 首先檢查 (Act1). 若 a G, x S, 則 a*x = a . x . a-1. 因 a, x, a-1 皆在 G 中而 G 是一個 group, 故 a . x . a-1 G = S. 得知 a*x S. 再來因 e*x = e . x . e-1 = x, 故知 (Act2) 也符合. 最後若 a, b G, x S, 則
在這個 action 中因 S = G, 故自然知 | S| = | G|. 現在來看 S0 是什麼? 照定義若 x S0 表示對所有的 g G 皆有 g*x = x. 也就是對於此 x, 對任意的 g G, 皆須符合 g . x . g-1 = x. 由此推得 g . x = x . g, g G. 換句話說 S0 的元素皆需和所有 G 中的元素可交換. 反之若 x S 可以和 G 中所有元素交換的話, 則
如果大家不健忘的話, 我們曾在 1.4 節中介紹這樣的元素所成的集合 Z(G) 稱為 G 的 center, 且利用 Lemma 1.5.1 說明過 Z(G) 是一個 G 的 subgroup. 總知, 我們證得了