¦^ÅU¤@¤U
¤¤ªº Euclid's Algorithm ¥i¥H»¡¬O¥ô¨ú
a, b
,
¨ä¤¤ b
0, «h¦s¦b
h, r
, ¨ä¤¤ r ²Å¦X r = 0 ©Î
r
<
b
¨Ï±o
a = b . h + r. ¦Ó¦b F[x] ¤¤ªº Euclid's
Algorithm ¬O»¡¥ô¨ú
f (x), g(x)
F[x] ¨ä¤¤ g(x)
0, «h¦s¦b
h(x), r(x)
F[x], ¨ä¤¤ r(x) ²Å¦X r(x) = 0 ©Î
deg(r(x)) < deg(g(x)) ¨Ï±o
f (x) = g(x) . h(x) + r(x).
³o¸Ì«nªº¬O¦b
¤¤¦³¤@Óµ´¹ïȨç¼Æ±N
¤¤ªº«D 0
¤¸¯À°e¨ì«Dtªº¾ã¼Æ, ¦Ó¦b F[x] ¤¤¦³¤@Ó degree ¨ç¼Æ±N F[x] ¤¤ªº«D
0 ¤¸¯À°e¨ì«Dtªº¾ã¼Æ. §ÚÌ´N¬OnÂ^¨ú³o¼Ëªº¨ç¼Æªº¯S©Ê.
°£¤F
©M F[x] ¥ ÁÙ¦³³hªº Euclidean domain. ¨Ò¦p
[i] = {a + bi | a, b
} ³o¤@Ó integral domain §Q¥Î
(a + bi) = a2 + b2 ³oÓ¨ç¼Æ´N¥i±o
[i] ¬O¤@Ó Euclidean domain
(¦b¦¹§Ú̲¤¥hÃÒ©ú, Y¦³¿³½ìªº¦P¾Ç¥i¨ìºô¯¸
http://math.ntnu.edu.tw/
li/note ¤U¸üÁ¿¸q ``Factorization of
Commutative Rings'' ¦³¸Ô²ÓÃÒ©ú).
¤@¯ë¦Ó¨¥nÅçÃÒ¤@Ó integral domain ¬O§_¬°¤@Ó Euclidean domain
¬O«Ü§xÃøªº. ¦b¦¹§Ų́䣰Q½×³oÃþªº°ÝÃD. §Ú̶ȦC¥X Euclidean domain
ªº«n©Ê½è. ¦^ÅU§ÚÌ´¿§Q¥Î Euclid's Algorithm ÃÒ¥X¦b
©M F[x]
¤¤©Ò¦³ªº ideal ³£¬O principle ideal. ³o¤@®MÃÒ©ú¥i¥H§¹§¹¾ã¾ã·h¨ì
Euclidean domain ¤W.
¥Ñ©ó d I, ¦ÛµM±o
d
I. ¥t¥ ¹ï¥ô·N a
I, ¥Ñ
Euclidean domain ªº°²³]ª¾¦s¦b h, r
R º¡¨¬
a = d . h + r ¥B
r = 0 ©Î
(r) <
(d ). ¦pªG r
0, ¥Ñ
r = a - d . h ¥B
a, d
I ¥iª¾ r
I. ¤]´N¬O»¡
r
I
{0} ¥B
(r) <
(d ). ³o©M
(d ) ¬O T ¤¤³Ì¤pªº°²³]¬Û¥Ù¬Þ, ¬Gª¾
r = 0. ´«¨¥¤§
a = d . h, §Y
a
d
. ¬G±oÃÒ
I
d
.
¥Ñ©ó¤@Ó integral domain ªº ideal ³£¬O principle ideal ³o¼Ëªº ring «D±`¯S§O, §Ṳ́]µ¹¥¦¤@Ó¯S§Oªº¦WºÙ.
Theorem 8.2.2 §i¶D§Ṳ́@Ó Euclidean domain ¤@©w¬O¤@Ó principle ideal domain. nª`·N, £¸Ó principle ideal domain ¥¼¥²·|¬O¤@Ó Euclidean domain. ¦³¿³½ìªº¦P¾Ç¥i¥H°Ñ¦Ò§ÚªºÁ¿¸q ``Factorization of Commutative Rings'' ¨ä¤¤¦³µ¹¤@Ó principle ideal domain ¦ý¤£¬O Euclidean domain ªº¨Ò¤l.