next up previous
�U�@��: Principle Ideal Domain �W�@��: Integral Domain �W�����ѩʽ� �e�@��: Divisor

Euclidean Domain

�ڭ̪��D $ \mathbb {Z}$ �M F[x] ���ҿת� Euclid's Algorithm (�l�Ƥξl���w�z). �b�o�@�`��, �ڭ̱N�Q�γo�өʽ誺�S�ʩw�q�@�دS���� ring �٬� Euclidean domain. �n�`�N�ڭ̪��w�q��@��ѤW���w�q²��, �D�n����]�O�ڭ̥u�����ثe���Ϊ��S��. ���L�ƹ�W�ڭ̩w�q�� Euclidean domain �M�@��ѤW�w�q�� Euclidean domain �i�H�ҩ��O�ۦP��.

�^�U�@�U $ \mathbb {Z}$ ���� Euclid's Algorithm �i�H���O���� a, b $ \in$ $ \mathbb {Z}$, �䤤 b$ \ne$ 0, �h�s�b h, r $ \in$ $ \mathbb {Z}$, �䤤 r �ŦX r = 0 �� $ \left\vert\vphantom{ r}\right.$r$ \left.\vphantom{ r}\right\vert$ < $ \left\vert\vphantom{ b}\right.$b$ \left.\vphantom{ b}\right\vert$ �ϱo a = b . h + r. �Ӧb F[x] ���� Euclid's Algorithm �O������ f (x), g(x) $ \in$ F[x] �䤤 g(x)$ \ne$ 0, �h�s�b h(x), r(x) $ \in$ F[x], �䤤 r(x) �ŦX r(x) = 0 �� deg(r(x)) < deg(g(x)) �ϱo f (x) = g(x) . h(x) + r(x). �o�̭��n���O�b $ \mathbb {Z}$ �����@�ӵ���Ȩ�ƱN $ \mathbb {Z}$ �����D 0 �����e��D�t�����, �Ӧb F[x] �����@�� degree ��ƱN F[x] �����D 0 �����e��D�t�����. �ڭ̴N�O�n�^���o�˪���ƪ��S��.

Definition 8.2.1   �] R �O�@�� integral domain. �p�G�s�b�@���

$\displaystyle \Phi$ : R $\displaystyle \setminus$ {0}$\displaystyle \to$$\displaystyle \mathbb {N}$ $\displaystyle \cup$ {0}

�ϱo����N�� a, b $ \in$ R �䤤 b$ \ne$ 0 ���i�H��� h, r $ \in$ R, �䤤 r �ŦX r = 0 �� $ \Phi$(r) < $ \Phi$(b), ���� a = b . h + r, �h�� R ���@�� Euclidean domain.

���F $ \mathbb {Z}$ �M F[x] � �٦��h�� Euclidean domain. �Ҧp $ \mathbb {Z}$[i] = {a + bi | a, b $ \in$ $ \mathbb {Z}$} �o�@�� integral domain �Q�� $ \Phi$(a + bi) = a2 + b2 �o�Ө�ƴN�i�o $ \mathbb {Z}$[i] �O�@�� Euclidean domain (�b���ڭ̲��h�ҩ�, �Y�����쪺�P�ǥi����� http://math.ntnu.edu.tw/$ \sim$li/note �U�����q ``Factorization of Commutative Rings'' ���Բ��ҩ�).

�@��Ө��n���Ҥ@�� integral domain �O�_���@�� Euclidean domain �O�ܧx����. �b���ڭ̨ä��Q�׳o�������D. �ڭ̶ȦC�X Euclidean domain �����n�ʽ�. �^�U�ڭ̴��Q�� Euclid's Algorithm �ҥX�b $ \mathbb {Z}$ �M F[x] ���Ҧ��� ideal ���O principle ideal. �o�@�M�ҩ��i�H�������h�� Euclidean domain �W.

Theorem 8.2.2   �Y R �O�@�� Euclidean domain �h R ���� ideal ���O principle ideal.

�� ��. �Y I �O R �����@�� ideal. �Ҽ T = {$ \Phi$(a) | a $ \in$ I $ \setminus$ {0}} �o�@�Ӷ��X. �ѩ� $ \Phi$ ���Ȱ�b $ \mathbb {N}$ $ \cup$ {0} �ҥH T �O $ \mathbb {N}$ $ \cup$ {0} ���@�Ӥl���X. �]�� T ���s�b�̤p������. ���y�ܻ��s�b d $ \in$ I $ \setminus$ {0} �ϱo����N�� a $ \in$ I $ \setminus$ {0} �Ҧ� $ \Phi$(d )$ \le$$ \Phi$(a). �ڭ̱��� I = $ \bigl($d$ \bigr)$.

�ѩ� d $ \in$ I, �۵M�o $ \bigl($d$ \bigr)$ $ \subseteq$ I. �t� ����N a $ \in$ I, �� Euclidean domain �����]���s�b h, r $ \in$ R ���� a = d . h + r �B r = 0 �� $ \Phi$(r) < $ \phi$(d ). �p�G r$ \ne$ 0, �� r = a - d . h �B a, d $ \in$ I �i�� r $ \in$ I. �]�N�O�� r $ \in$ I $ \setminus$ {0} �B $ \Phi$(r) < $ \Phi$(d ). �o�M $ \Phi$(d ) �O T ���̤p�����]�ۥ٬�, �G�� r = 0. ������ a = d . h, �Y a $ \in$ $ \bigl($d$ \bigr)$. �G�o�� I $ \subseteq$ $ \bigl($d$ \bigr)$. $ \qedsymbol$

�ѩ�@�� integral domain �� ideal ���O principle ideal �o�˪� ring �D�`�S�O, �ڭ̤]�����@�ӯS�O���W��.

Definition 8.2.3   �p�G R �O�@�� integral domain �B R ���� ideal ���O principle ideal, �h�� R ���@�� principle ideal domain.

Theorem 8.2.2 �i�D�ڭ̤@�� Euclidean domain �@�w�O�@�� principle ideal domain. �n�`�N, ���� principle ideal domain �����|�O�@�� Euclidean domain. �����쪺�P�ǥi�H�Ѧҧڪ����q ``Factorization of Commutative Rings'' �䤤�����@�� principle ideal domain �����O Euclidean domain ���Ҥl.


next up previous
�U�@��: Principle Ideal Domain �W�@��: Integral Domain �W�����ѩʽ� �e�@��: Divisor
Administrator 2005-06-18