�^�U�@�U
���� Euclid's Algorithm �i�H���O����
a, b
,
�䤤 b
0, �h�s�b
h, r
, �䤤 r �ŦX r = 0 ��
r
<
b
�ϱo
a = b . h + r. �Ӧb F[x] ���� Euclid's
Algorithm �O������
f (x), g(x)
F[x] �䤤 g(x)
0, �h�s�b
h(x), r(x)
F[x], �䤤 r(x) �ŦX r(x) = 0 ��
deg(r(x)) < deg(g(x)) �ϱo
f (x) = g(x) . h(x) + r(x).
�o�̭��n���O�b
�����@�ӵ���Ȩ�ƱN
�����D 0
�����e��D�t�����, �Ӧb F[x] �����@�� degree ��ƱN F[x] �����D
0 �����e��D�t�����. �ڭ̴N�O�n�^���o�˪���ƪ��S��.
���F
�M F[x] � �٦��h�� Euclidean domain. �Ҧp
[i] = {a + bi | a, b
} �o�@�� integral domain �Q��
(a + bi) = a2 + b2 �o�Ө�ƴN�i�o
[i] �O�@�� Euclidean domain
(�b���ڭ̲��h�ҩ�, �Y�����쪺�P�ǥi�����
http://math.ntnu.edu.tw/
li/note �U�����q ``Factorization of
Commutative Rings'' ���Բ��ҩ�).
�@��Ө��n���Ҥ@�� integral domain �O�_���@�� Euclidean domain
�O�ܧx����. �b���ڭ̨ä��Q�׳o�������D. �ڭ̶ȦC�X Euclidean domain
�����n�ʽ�. �^�U�ڭ̴��Q�� Euclid's Algorithm �ҥX�b
�M F[x]
���Ҧ��� ideal ���O principle ideal. �o�@�M�ҩ��i�H�������h��
Euclidean domain �W.
�ѩ� d I, �۵M�o
d
I. �t� ����N a
I, ��
Euclidean domain �����]���s�b h, r
R ����
a = d . h + r �B
r = 0 ��
(r) <
(d ). �p�G r
0, ��
r = a - d . h �B
a, d
I �i�� r
I. �]�N�O��
r
I
{0} �B
(r) <
(d ). �o�M
(d ) �O T ���̤p�����]�ۥ٬�, �G��
r = 0. ������
a = d . h, �Y
a
d
. �G�o��
I
d
.
�ѩ�@�� integral domain �� ideal ���O principle ideal �o�˪� ring �D�`�S�O, �ڭ̤]�����@�ӯS�O���W��.
Theorem 8.2.2 �i�D�ڭ̤@�� Euclidean domain �@�w�O�@�� principle ideal domain. �n�`�N, ���� principle ideal domain �����|�O�@�� Euclidean domain. �����쪺�P�ǥi�H�Ѧҧڪ����q ``Factorization of Commutative Rings'' �䤤�����@�� principle ideal domain �����O Euclidean domain ���Ҥl.