«e±´£¹L¹ï¤@¯ëªº integral domain ¥ôµ¹¨âÓ«D 0 ¤¸¯À¨ä greatest common divisor ¤£¤@©w¦s¦b. ¤£¹L¹ï©ó principle ideal domain, ¥ô·N¨âÓ«D 0 ¤¸¯À¤§ greatest common divisor ´N¤@©w¦s¦b¤F!
º¥ý¥ýÃÒ©ú d ¬O a, b ªº common divisor. ¥Ñ©ó
±µ¤U¨ÓÃÒ©úY c ¬O a, b ªº¤@Ó common divisor, «h c | d.
µM¦ÓY c | a ¥B c | b, ªí¥Ü
a
c
¥B
b
c
. ¥Ñ©ó
c
¬O¤@Ó ideal,
¥¦¦³¥[ªkªº«Ê³¬©Ê, ¬G±o
a
+
b
c
. ¤]´N¬O»¡
d
c
. ¬G±oÃÒ c | d.
³Ì«á¥Ñ©w¸q,
a
+
b
¤¤ªº¤¸¯À³£¬O
r . a + s . b, ¨ä¤¤
r, s
R ³oºØ§Î¦¡. ¬G¥Ñ
d
d
=
a
+
b
ª¾¤@©w¦s¦b
r, s
R ¨Ï±o
d = r . a + s . b. ³oÓ¯S©Ê¹ï©ó¥ô·N a, b ªº
greatest common divisor ¬Ò¹ï. ³o¬O¦]¬°¥Ñ Lemma 8.1.6 ª¾Y
d' ¬O a, b ¥t¤@Ó greatest common divisor, «h§Ų̵́M¦³
d'
=
d
=
a
+
b
.
``Y d ¬O a, b ªº¤@Ó greatest common divisor, «h¦s¦b r, s R
º¡¨¬
d = r . a + s . r'' ³o¤@Ó¯S©Ê«D±`¦³¥Î.
¤j®a¥i¥H§Q¥Î³oÓ¯S©Ê¦A¥é·Ó Proposition 7.1.7 ©Î Proposition
7.2.11 ªºµý©ú¤è¦¡ÃÒ±o¤@Ó principle ideal domain ¤¤ªº
irreducible element ³£¬O prime element. ¤£¹L³o¸Ì§Ṳ́¶²Ð¥t¤@ºØ§Q¥Î
ideal ¤èªkªºÃÒ©ú.
¤Ï¤§, ¦pªG
a
¬O¤@Ó maximal ideal, ·íµM§ä¤£¨ì nontrivial
principle ideal ¥]§t
a
. ¬G§Q¥Î Lemma 8.1.9 (1) ª¾
a ¬O¤@Ó irreducible element.
¦^ÅU¤@¤U Lemma 8.1.9 ªº¥t¤@³¡¤À¬O»¡ a ¬O prime element
Y¥B°ßY
a
¬O¤@Ó prime ideal.
©Ò¥H§Ú̫ܧ֪º´N¥i¥H±o¨ì¥H¤U¤§µ²ªG.
¤Ï¤§, Y a ¬O R ¤¤ªº irreducible element, ¥Ñ Lemma 8.3.2
ª¾
a
¬O R ªº¤@Ó maximal ideal. µM¦Ó Corollary 6.5.13
§i¶D§ÚÌ R ¤¤ªº maximal ideal ³£¬O prime ideal, ¬Gª¾
a
¬O
R ªº¤@Ó prime ideal. ¦]¦¹§Q¥Î Lemma 8.1.9 (2) ±oÃÒ a
¬O¤@Ó prime element.
«e±´£¹L¦b¤@¯ëªº commutative ring with 1 ¤¤ªº maximal ideal ³£¬O prime ideal, ¦ý¬O prime ideal ¥¼¥²¬O maximal ideal. µM¦Ó Lemma 8.3.2 ¥H¤Î Proposition 8.3.3 ±N principle ideal domain ¤¤ªº maximal ideal ©M prime ideal µ¹¤F¤@Ó«nªºÃö³s.
¦] R ¬O¤@Ó principle ideal domain, ¬G¦s¦b a 0 ¨Ï±o
I =
a
. ¦pªG
a
¬O¤@Ó prime ideal, «h¥Ñ Lemma
8.1.9 ª¾ a ¬O¤@Ó prime element. ¬G¥Ñ Proposition
8.3.3 (©Î Lemma 8.1.8) ª¾ a ¬O¤@Ó irreducible
element. ¦]¦¹¥Ñ Lemma 8.3.2 ª¾
a
= I ¬O¤@Ó maximal
ideal.
§ÚÌ´¿¸g§Q¥Î
©M F[x] ¤¤ªº irreducible element ©M prime
element ¬O¬Û¦PªºÃÒ©ú
©M F[x] ªº°ß¤@¤À¸Ñ©Ê½è.
§Ú̲¦b´X¥G¤w¨ì¹F¥i¥HÃÒ©ú principle ideal domain
ªº°ß¤@¤À¸Ñ©Ê½èªº¥Ø¼Ð. ¤£¹L·í®É§Ú̦b
©M F[x]
¤¤¬O§Q¥Î¼Æ¾ÇÂk¯Çªk¨ÓÃÒ©ú°ß¤@¤À¸Ñ©Ê½è, ²¦b¦b¤@¯ëªº principle ideal
domain §Ų́S¿ìªk¨Ï¥Î¼Æ¾ÇÂk¯Çªk. ¤U¤@Ó Lemma
¥i¥HÀ°§U§Ú̧JªA³oÓ§xÃø.
°²³] a, b I, ´«¥y¸Ü»¡¦s¦b
i, j
¨Ï±o a
Ii ¥B b
Ij. °²³] i
j, ¥Ñ°²³]ª¾
Ij
Ii. ¬G±o
a, b
Ii.
¦]¦¹¥Ñ Ii ¬O¤@Ó ideal, §Ú̦³
a - b
Ii. ©Ò¥H±o a - b
I.
¥t¥ Y a
I ¥B r
R, ¥Ñ°²³]ª¾¦s¦b
i
¨Ï±o a
Ii.
¬G±o
a . r
Ii, ¤]´N¬O»¡
a . r
I. ¬G¥Ñ Lemma
6.1.2 ª¾ I ¬O R ¤¤ªº¤@Ó ideal.
¬JµM I ¬O R ªº ideal ¥B R ¬O principle ideal domain, ¬G¦s¦b
a R ¨Ï±o
a
= I. µM¦Ó§Q¥Î
a
a
= I ª¾¦s¦b
m
¨Ï±o a
Im. ¬G§Q¥Î
a
¬O¥]§t a ³Ì¤pªº ideal
(Lemma 6.5.1) ª¾
I =
a
Im. ´«¥y¸Ü»¡ I = Im,
¦]¦¹§Q¥Î¹ï©Ò¦³ªº i > m ¬Ò¦³
Im
Ii ¥H¤Î
Ii
I
±oÃÒ I = Im = Ii,
i > m.
§ÚÌnÂǥΠLemma 8.3.5 ªº¥Dnì¦]¬O¦pªG d ¬O a ªº¤@Ó
nontrivial divisor (§Y d | a ¦ý d ¤£¬O unit ¥B©M a ¤£
associates), «h
a
d
. ¦p¦¹¤@¨Ó, ¥i¥HÃÒ¥X R
¤¤ªº¤¸¯À¥u¯à¼g¦¨¦³¦hÓ irreducible element ªº¼¿n.
a | = | p1n1 ... prnr | |
= | q1m1 ... qsms |
±µ¤U¨Ó§ÚÌÃҰߤ@©Ê. ¤@¯ë¨Ó»¡Y¤wÃÒ±o irreducible element ´N¬O prime element °ß¤@©Ê´N¦Û°Ê¦¨¥ß. ³o¬O¦]¬°¦pªG
º¡¨¬ Theorem 8.3.6 ¤¤ªº°ß¤@¤À¸Ñ©Ê½èªº ring «D±`«n, §Ṳ́]µ¹¥¦¤@Ó¯S®íªº¦W¤l.
Theorem 8.3.6 §i¶D§Ṳ́@Ó principle ideal domain
¤@©w¬O¤@Ó unique factorization domain. ¦ý¬O¤@Ó unique
factorization domain ¨Ã¤£¤@©w¬O principle ideal domain. §ÚÌ´¿¸g¨£¹L
[x] ¬O¤@Ó unique factorization domain (Theorem 7.3.13)
¦ý¨ä¤¤
2
+
x
³o¤@Ó ideal ¨Ã¤£¬O principle ideal
(Example 7.3.1).