º¥ý§ÚÌÁÙ¬O¹ï¤@Ó¤¸¯Àªº¦]¼Æµ¹¤@Ó¥¿¦¡ªº©w¸q.
¦^ÅU¤@¤UY R ¬O integral domain ¥B d R, «h
d
= {d . r | r
R} ©Ò¥H¥Ñ¤W¤@Ó©w¸q§ÚÌ«Ü®e©öª¾ d | a Y¥B°ßY
a
d
. µM¦ÓY
a
d
, ¥Ñ
d
¬O¤@Ó ideal
ª¾¹ï¥ô·Nªº r
R ¬Ò¦³
a . r
d
. ¬G±o
a
d
. ¤Ï¤§Y
a
d
, ¥Ñ
a
a
±oª¾
a
d
. ´«¥y¸Ü»¡
a
d
Y¥B°ßY
a
d
, ¦]¦¹§Ú̦³¥H¤Uªºµ²½×:
Lemma 8.1.2 ÁöµM²³æ¦ý¬Û·í¹ê¥Î, ¥¦§i¶D§Ṳ́¸¯À¶¡ªº¾ã°£Ãö«Y¥i¥HÂà´«¦¨ ideal ¶¡ªº¥]§tÃö«Y. ¥H«á§ÚÌn½Í½×¨â¤¸¯À¶¡ªº¾ã°£Ãö«Y®É§Ú̦³®É¤£¥Î divisor ªº©w¸q³B²z, §ÚÌ·|¥Î³oºØ ideal ªºÃö«Y¨Ó±´°Q, ¤j®a·|µo²³oÓ¤èªk¬O²¼ä¤S¤è«Kªº.
Y a R ¥B a
0, §Ú̫ܧ֪º´Nª¾¹D¥ô·N R ¤¤ªº¤@Ó unit
³£·|¬O a ªº¤@Ó divisor. ³o¬O¥Ñ©óY u ¬O R ¤¤ªº unit, «h
u
= R (Lemma 6.2.4). ¬G¥Ñ
a
R =
u
ª¾ u | a. ¥t¤@¤è±·í u ¬O unit ®É, a . u ¤]¬O a ªº
divisor. ³o¤]¥i¥Ñ
a . u
=
a
(Lemma 6.5.4) ¤Î
Lemma 8.1.2 °¨¤W±o¨ì. u ©M a . u ³oºØ a ªº divisor
¹ï a ªº¤À¸Ñ¨S¦³¬Æ»òÀ°§U, §Ú̺٤§¬° a ªº trivial divisor.
¥H¤U Lemma ¬O±´°Q a . u ³oÓ a ªº trivial divisor ©M a
ªºÂ²³æÃö«Y.
(2) (3): ¥i¥Ñ Lemma 8.1.2 ª½±µ±À±o.
(3) (1): ¥Ñ a | b ª¾¦s¦b r
R ¨Ï±o
b = a . r, ¦A¥Ñ b | a ª¾¦s¦b r'
R ¨Ï±o
a = b . r'. ¬Gª¾
¬°¤F¤è«K°_¨£, §Ú̵¹¦³ Lemma 8.1.3 ¤¤ªºÃö«Y¤@Ó¯S®íªº¦WºÙ.
§Q¥Î Lemma 8.1.3 ¤¤ªº (2) §Ú̪¾ a b Y¥B°ßY
a
=
b
, ©Ò¥H°¨¤W±oª¾
¬O¤@Ó equivalence relation.
¦^ÅU¤@¤U¦b
¤¤§ÚÌ©w a, b ªº greatest common divisor ¬O a, b
ªº common divisor ¤¤³Ì¤jªº, ¦Ó¦b F[x] ¤¤§ÚÌ©w f (x), g(x) ªº
greatest common divisor ¬O f (x), g(x) ªº common divisor ¤¤ degree
³Ì¤jªº. ¦b¤@¯ëªº integral domain ¬OµLªk©w¤j¤p©Î degree ªº.
¤£¹L«e¨âºØ±¡ªpªº greatest common divisor ³£¦³¤@Ó¦@¦Pªº©Ê½è (°Ñ¨£
Corollary 7.1.5 (2) ¥H¤Î Corollary 7.2.9 (2)),
§ÚÌ´N¥Î³oөʽè¨Ó©w integral domain ¤¤ªº greatest common divisor.
Y u ¬O R ¤¤ªº unit, «h¥Ñ©ó
u
= R (Lemma 6.2.4)
¥iª¾¹ï¥ô·N
a1,..., an ¬Ò¦³
ai
u
,
i
{1,..., n}. ¤]´N¬O»¡ u | ai,
i
{1,..., n}. ¬Gª¾ R ¤¤ªº unit ³£¬O
a1,..., an ªº common divisor. ¤£¹L¹ï¤@¯ëªº integral domain,
¹ï¥ô·Nªº
a1,..., an ¨ä greatest common divisor ¥¼¥²¦s¦b.
§Y¨Ï¦s¦b¨ä greatest common divisor ¤]¤£¤@©w°ß¤@ (¦b F[x]
ªº±¡ªp´N¬O¤@¨Ò). ¥t¥ nª`·Nªº¬O¦b¦¹©w¸q¤§¤U
¤¤ªº greatest
common divisor ©M Section 7.1 ¤¤ Definition 7.1.3 ªº
greatest common divisor ¬Û®t¤F¤@Ó¥¿t¸¹. ±µµÛ§Ú̦C¥X greatest
common divisor ªº°ò¥»©Ê½è.
(2) °²³] R ¤¤¥ô¨âÓ«D 0 ¤¸¯Àªº greatest common divisor ¦s¦b, §Ú̧Q¥Î¼Æ¾ÇÂk¯ÇªkÃÒ©ú¥ô·N n Ó«D 0 ¤¸¯À a1,..., an ªº greatest common divisor ¤]¦s¦b. °²³]¥ô·N n - 1 Ó«D 0 ¤¸¯À a1,..., an - 1 ªº greatest common divisor ¦s¦b¥B¬° d0. ¦] d0 ©M an ¬Ò¬O R ¤¤ªº«D 0 ¤¸¯À, ¥Ñ°²³]ª¾¨ä greatest common divisor ¦s¦b. ¥O d ¬° d0 ©M an ªº greatest common divisor, §ÚÌnÃÒ©ú d ¬° a1,..., an ªº greatest common divisor.
º¥ý¥Ñ d | d0 ¥B d0 ¬O
a1,..., an1 ªº common divisor
ª¾
d | d0 | ai,
i
{1,..., n - 1}. ¦A¥Ñ d | an ª¾ d ¬O
a1,..., an ªº¤@Ó common divisor.
±µµÛY c ¬O
a1,..., an ªº¤@Ó common divisor, «h c ·íµM¬O
a1,..., an - 1 ªº¤@Ó common divisor. ¬G¥Ñ d0 ¬O
a1,..., an - 1 ªº greatest common divisor ª¾ c | d0.
´«¨¥¤§ c ¬O d0 ©M an ªº¤@Ó common divisor. ¬G¥Ñ d ¬O
d0 ©M an ªº greatest common divisor ª¾ c | d. ¦]¦¹¥Ñ©w¸qª¾
d ¬O
a1,..., an ªº greatest common divisor.
³Ì«á§ÚÌn©w¸q irreducible element ©M prime element. Irreducible ¬O¤£¥i¤À¸Ñªº·N«ä, ´«¨¥¤§´N¬O°£¤F trivial divisor ¥ ¨S¦³¨ä¥Lªº divisor.
§ÚÌ´£¹L irreducible element ©M prime element ªº©w¸q°ò¥»¤W¬O¤£¦Pªº, ©Ò¥H¥¦Ìì«h¤W¬O¨âºØ¤£¦Pªº¯S©Ê. ¤£¹L¥H¤Uªºµ²ªG§i¶D§Ú̦b integral domain ¤§¤U prime element ¤@©w¬O irreducible element.
«e±´¿¸g´£¹L§Ú̳ßÅw¥Î ideal ªºÃö«Y¨Ó´yø¤¸¯À¶¡ªº¾ã°£Ãö«Y. ¤U±ªº Lemma ´N¬O§i¶D§ÚÌ irreducible element ©M prime element ©Ò²£¥Íªº principle ideal ©Ò¹ïÀ³ªº©Ê½è.
: ¤Ï¤§Y d | a, «hª¾
a
d
.
¥Ñ°²³]¨S¦³ nontrivial principle ideal ¥]§t
a
, ±o
d
¬O¤@Ó trivial principle ideal ¥]§t
a
. ´«¨¥¤§
d
= R ©Î
d
=
a
. Y
d
= R ªí¥Ü
d
=
1
¬G¥Ñ Lemma
8.1.3 ª¾ d
1, ¤]´N¬O»¡ d ¬O¤@Ó unit. Y
d
=
a
¦P¼Ë¥Ñ Lemma 8.1.3 ª¾ d
a. ¬G±o a
¬O¤@Ó irreducible element.
(2)
: °²³] a ¬O¤@Ó prime element. ¦pªG
c . d
a
, ª¾
a | c . d. ¬G¥Ñ a ¬O prime ªº°²³]ª¾ a | c ©Î a | d. ³o§i¶D§ÚÌ
c
a
©Î
d
a
, ¬G±oÃÒ
a
¬O¤@Ó prime ideal.
: °²³]
a
¬O¤@Ó prime ideal. ¥ô¨ú c, d
R
º¡¨¬
a | c . d, ª¾
c . d
a
. ¬G¥Ñ
a
¬O¤@Ó prime ideal ªº°²³]±o
c
a
©Î
d
a
. ´«¨¥¤§
a | c ©Î a | d, ¬G±oÃÒ a ¬O¤@Ó prime element.