�� ��.
�ڭ̧Q�Ϋe�����Ъ� group action, �o�̧ڭ̥O
m =
p,
H �O
Sp ����
(1 2
... p) �o�@��
p-cycle �Ҳ��ͪ� cyclic subgroup.
��
S = {(
a1,...,
ap)
Gp |
a1 . a2 ... ap =
e}.
�Y
|
G| =
n �Q�Ϋe�����l (
4.2) ��
|
S| =
np - 1, �G�Ѱ��]
p |
n �o
p �㰣 |
S|. �]�N�O��
| S| 0(mod p) |
(4.5) |
�� lemma
3.4.7 ��
(1 2
... p) �o�@��
p-cycle ��
order ��
p, �G�� |
H| =
p. �]�N�O��
H �O�@��
p-group. �]���Q��
Proposition
4.1.4 �M���l (
4.5) ��
|
S0|

|
S|

0(mod
p).
�]�N�O��
p �㰣 |
S0|.
���L�Ѧ��l (
4.4) ��
|
S0|

1, �A�[�W
p �㰣 |
S0|,
�]�N�O |
S0| �O
p �����ƥB���O 0. �]���ڭ̪�
| S| > 1.
���y�ܻ�
S0 �����F�w����
(
e,
e,...,
e)
�o�Ӥ����~�٦���L������. �Ѧ��l (
4.3), �ڭ̪��D�b�o�Ǥ������O
(
a,
a,...,
a) �o�اΦ�, �B
ap =
e. �]���o
a
e �B
ap =
e,
�]�N�O��
ord(
a) =
p.
�^�U�@�U�q�e�ڭ̥��ҩ��F�b abelian group ���ΤU�� Cauchy �w�z,
�A�Q�Υ��ұo abelian group �� Sylow �w�z. �N�ӧڭ̤]�|�γo�@�� group
�� Cauchy �w�z�ҩ��@�� group �� Sylow �w�z.