下一頁: Normal Extension
上一頁: Normal Extension 和 Separable
前一頁: Normal Extension 和 Separable
  目 錄
若多項式
f (x)
K[x], 在 L 中可以完全分解成一次式的乘積, 即
f (x) 的根全部落在 L 中, 則我們稱 f (x) 在 L 中 splits.
當然若
L
L' 則 f (x) 也在 L' 中 splits,
所以為了符合「經濟效益」我們只考慮讓 f (x) splits 最小的 field,
稱之為 f (x) 的 splitting field.
Definition 3.1.1
假設
L/
K 是一個 field extension,
f (
x)
K[
x]. 如果
f (
x) 在
L[
x] 中可完全分解成一次式的乘積, 即:
f (
x) =
c(
x -

)
... (
x -

),
其中
c,

,...,
L, 則稱
f (
x)
splits over
L.
如果 f (x) splits over L 且對任意 L/K 的 proper intermediate
field F (即
F
L), f (x) 都不 splits over F, 則稱
L 是 f (x) over K 的 splitting field.
從以上定義我們可以看出若 L 是 f (x) over K 的 splitting field
且
,...,
L 是 f (x) 所有的根, 則因為
K(
,...,
) 是包含 K 和
,...,
最小的 field, 我們得
L = K(
,...,
).
要注意雖然是同一個多項式 f (x), 不過若 over 不同的 field
可能會有不同的 splitting field. 當然了若
K
F
L,
則
L = K(
,...,
) = F(
,...,
),
所以此時 L 仍為 f (x) over F 的 splitting field. 不過若
K
F 但
F
L, 則
F(
,...,
)
是
f (x)
F[x] over F 的 splitting field, 但明顯的
L = K(
,...,
)
F(
,...,
).
事實上這時候
K(
,...,
) 甚至不 isomorphic to
F(
,...,
). 所以一般來說要談 splitting field
必須說明是 over 哪一個 field 的 splitting field.
其實即使 over 同樣的 field K, f (x) 的 splitting field 並不唯一.
這是由於找 f (x) 的根的方法並不唯一. 也就是說當初我們在某一個 field
L 中將 f (x) 的所有的根
,...,
找出時,
有可能在另一個 field L' 找到另一組根
,...,
. 如果
L 和 L' 都包含於某個更大的 field M, 那麼我們可得
{
,...,
} = {
,...,
} (否則會得到
在 M 中 f (x) 根的的個數大於
deg(f (x)) 的矛盾). 因此知
K(
,...,
) = K(
,...,
).
不過在一般的情形就不見得這麼幸運了. 假設 f (x) 是 irreducible over
K, 若找到
是 f (x) 的一個根, 現若在另一個 field
找到
也是 f (x) 的一個根, 我們僅知
F1 = K(
) 和
F2 = K(
) 是 isomorphic. 若要得到 f (x) over K 的 splitting
field, 必須找到 f (x) 其他的根. 由於
F1 是 f (x)
的根, 知存在
h(x)
F1[x] 使得
f (x) = (x -
)h(x), 同理知存在
l (x)
F2[x] 使得
f (x) = (x -
)l (x). 現在問題發生了 h(x) 和
l (x) 不只是不同的多項式, 它們的係數所在的 fields, F1 和 F2
也可能不同, 這樣一直找根下去所得的根差別也可能越來越大,
那麼這樣得到的 splitting field 會不會也差別很大呢? 要回答這個問題,
我們必須先了解這裡的 h(x) 和 l (x) 之間的關係.
首先我們要提醒的是在剛才 f (x) 的分解中, 絕不能直接將 f (x) 分解成
(x -
)(x -
) 乘上另一個多項式的形式. 這是因為
和
可能無法落在同一個 field 之中, 它們之間就不能運算, 在這時候
(x -
)(x -
) 是沒有意義的. 不管怎樣 F1 和 F2
之間是 K-isomorphic 的, 亦即存在
: F1
F2, 是
K-isomorphism, 且滿足
(
) =
. 現若
h(x) = an - 1xn - 1 + an - 2xn - 2 + ... + a1x + a0, 其中
ai
F1, 即
f (x) = (x - )(an - 1xn - 1 + an - 2xn - 2 + ... + a1x + a0). |
(3.1) |
由於
將 K 中元素固定, 若將
作用在 f (x) 的所有係數,
則所得的多項式仍為 f (x). 另一方面將
作用在等式
(3.1) 右邊的多項式的係數, 所得的多項式為
(
x -

(

))(

(
an - 1)
xn - 1 +

(
an - 2)
xn - 2 +
... +

(
a1)
x +

(
a0)).
由於
(
) =
, 因此我們得
f (
x) = (
x -

)(

(
an - 1)
xn - 1 +

(
an - 2)
xn - 2 +
... +

(
a1)
x +

(
a0)).
又因為
是 F1 到 F2 的函數, 可知
(an - 1)xn - 1 +
(an - 2)xn - 2 + ... +
(a1)x +
(a0)
F2[x]. 因此利用 F2[x] 的分解唯一性質知
l (x) =
(an - 1)xn - 1 +
(an - 2)xn - 2 + ... +
(a1)x +
(a0). 所以我們很自然的有以下的定義.
Definition 3.1.2
假設

:
F1
F2, 是 ring isomorphism, 對任意
f (
x) =
anxn +
... +
a1x +
a0
F1[
x],
我們令
f
(
x) =

(
an)
xn +
... +

(
a1)
x +

(
a0)
F2[
x].
簡單來說 f
(x) 就是將 f (x) 這個多項式的係數用
作用後所得的多項式. 由於 f (x) 的係數落在 F1, 所以 f
(x)
的係數會落在 F2. 我們很自然的得到一個從 F1[x] 到 F2[x]
的函數.
Lemma 3.1.3
假設
F1 和
F2 是 isomorphic fields,

:
F1
F2 是一
isomorphism. 定義

:
F1[
x]
F2[
x], 使得對任意
f (
x)
F1[
x] 皆有

(
f (
x)) =
f
(
x), 則

是一個 ring
isomorphism.
証 明.
首先檢驗

是一個 ring isomorphism. 若
f (
x),
g(
x)
F1[
x],
依定義, 很容易驗證
f
(
x) +
g
(
x) = (
f +
g)

(
x), 所以知

(
f (
x) +
g(
x)) =

(
f (
x)) +

(
g(
x)). 至於乘法, 我們可以用
induction 來證明. 首先若
f (
x) =
a0
L1,
g(
x) =
bmxm +
... +
b1x +
b0
L1[
x], 則
f (
x)
. g(
x) =
a0bmxm +
... +
a0b1x +
a0b0. 故知
(f (x) . g(x)) |
= |
(a0bm)xm + ... + (a0b1)x + (a0b0) |
|
|
= |
(a0) (bm)xm + ... + (a0) (b1)x + (a0) (b0). |
|
另一方面

(
f (
x))
. 
(
g(
x)) =

(
a0)
. (

(
bm)
xm +
... +

(
b1)
x +

(
b0)),
故知當
deg(
f (
x)) = 0 時

(
f (
x))
. 
(
g(
x)) =

(
f (
x)
. g(
x)). 現假設當
deg(
f (
x)) <
n 時對任意
g(
x) =
bmxm +
... +
b1x +
b0
L1[
x] 皆有

(
f (
x))
. 
(
g(
x)) =

(
f (
x)
. g(
x)). 現若
f (
x) =
anxn +
... +
a1x +
a0, 可將
f (
x) 寫成
f (
x) =
anxn +
f1(
x), 其中
deg(
f1(
x)) <
n. 因此
f (x) . g(x) = anbmxn + m + ... + anb1xn + 1 + anb0xn + f1(x) . g(x).
因此利用

保持加法的性質以及 induction 的假設知
(f (x) . g(x)) |
|
= |
(anbmxn + m + ... + anb1xn + 1 + anb0xn) + (f1(x) . g(x)) |
|
|
= |
(an) (bm)xn + m + ... + (an) (b1)xn + 1 + (an) (b0)xn + (f1(x) . g(x)) |
|
|
= |
(anxn) . (g(x)) + (f1(x)) . (g(x)) |
|
|
= |
(anxn + f1(x)) . (g(x)) = (f (x)) . (g(x)). |
|
故由 induction 得知

(
f (
x))
. 
(
g(
x)) =

(
f (
x)
. g(
x)).
由於
: F1
F2 是 isomorphism, 我們知
的 inverse,
: F2
F1 存在且為 ring isomorphism. 現考慮
: F2[x]
F1[x], 定義為對任意
g(x) = bmxm + ... + b1x + b0
F2[x], 皆有
(g(x)) =
(bm)xm + ... +
(b1)x +
(b0).
很容易驗證對任意
f (x)
F1[x],
g(x)
F2[x] 皆有
(
(f (x))) = f (x) 且
(
(g(x))) = g(x), 故知
是
1-1 and onto, 得證
是一個 ring isomorphism.
在一般 ring 的理論中我們知若 R1 和 R2 是 rings,
: R1
R2 是 ring homomorphism 且 I 是 R1 的 ideal, 則 R1/I 和
R2/
(I) 看成 rings 仍為 isomorphic. 所以我們有以下之結果.
Corollary 3.1.4
假設
F1 和
F2 是 isomorphic fields,

:
F1
F2 是一
isomorphism 且
p(
x)
F1[
x]. 則存在一 ring isomorphism

:
F1[
x]/(
p(
x))
F2[
x]/(
p
(
x)) 滿足

(

) =

且對任意
F1,

(

) =

.
証 明.
由 Lemma
3.1.3 我們知

:
F1[
x]
F2[
x] 是一個 ring
isomorphism. 現考慮

:
F2[
x]
F2[
x]/(
p
(
x)) 使得對任意
g(
x)
F2[
x], 皆有

(
g(
x)) =

(modulo
(
p
(
x))).
我們知

是 onto 的 ring homomorphism, 故
o
:
F1[
x]
F2[
x]/(
p
(
x)) 是一個 onto 的 ring
homomorphism. 現若
f (
x)

ker(
o
), 即

(
f (
x)) =
f
(
x)

(
p
(
x)), 則存在
h(
x)
F2[
x] 使得
f
(
x) =
p
(
x)
. h(
x). 兩邊多項式的係數用

作用可得
f (
x) =
p(
x)
. h
(
x). 由於
h
(
x)
F1[
x], 故知
f (
x)

(
p(
x)), 得證
ker(
o
) = (
p(
x)). 因此利用 ring 的 first isomorphism
定理知
o
induces 一個 ring isomorphism

:
F1[
x]/(
p(
x))
F2[
x]/(
p
(
x)), 其中對任意
f (
x)
F1[
x],

(

) =
o
(
f (
x)). 又因為依定義
o
(
x) =

(
x) =

且對任意
F1,
o
(

) =

(

(

)) =

, 故得

(

) =

且對任意
F1,

(

) =

.
這裡要特別強調: 既然
: F1[x]
F2[x] 是 ring isomorphism,
我們知若
p(x)
F1[x] 是 irreducible polynomial, 則
(p(x)) = p
(x) 在 F2[x] 中亦為 irreducible polynomial.
因此我們有以下之性質.
Corollary 3.1.5
假設
F1 和
F2 是 isomorphic fields,

:
F1
F2 是一
isomorphism 且
p(
x)
F1[
x] 是
F1[
x] 中的 irreducible
polynomial. 若

是
p(
x) 的一個根, 而

是
p
(
x) 的一個根, 則存在一 isomorphism

:
F1(

)
F2(

) 滿足

(

) =

且對任意
F1,

(

) =

(

).
証 明.
由於
p(
x) 是
F1[
x] 中的 irreducible polynomials, 我們知存在
ring isomorphism

:
F1(

)
F1[
x]/(
p(
x)) 滿足

(

) =

以及對任意
F1,

(

) =

. 又由於
p
(
x) 是
F2[
x] 中的
irreducible polynomials, 我們知存在 ring isomorphism

:
F2(

)
F2[
x]/(
p
(
x)) 滿足

(

) =

以及對任意
F2,

(

) =

. 故利用 Corollary
3.1.4, 考慮

=
o
o
:
F1(

)
F2(

). 則

是一個 ring isomorphism, 且
以及對任意
F1,

(

) =
o
o
(

) =

(

(

)) =

(

) =

(

).
在 Corollary 3.1.5 中, 由於
若定義域限制在 F1 則和
為同一函數 (即
|F1 =
). 通常我們就稱
: F1
F2 是 extendible to
: F1(
)
F2(
).
現在我們在回到當初要探討有關 splitting field 的唯一性. Corollary
3.1.5 大致上是說: 若找好相對應的根, 這樣一直 extend
上去的 fields 都會 isomorphic. 下一個定理就是要說明這件事.
這個定理是有關 splitting field 最重要的觀念, 以後我們要探討有關
splitting field 的理論都要用上這個定理. 為了強調它的重要性,
在這裡我們特別稱之為 splitting field 的 fundamental theorem
(一般書並未如此稱呼).
Theorem 3.1.6 (The Fundamental Theorem for Splitting Fields)
假設
F1 和
F2 是 isomorphic fields,

:
F1
F2 是一
isomorphism 且
f (
x)
F1[
x]. 若
L 是
f (
x) over
F1 的
splitting field, 且
L'/
F2 是一個 field extension 使得
f
(
x)
splits over
L', 則存在一個一對一的 ring homomorphism (即
monomorphism)

:
L
L' 滿足

|
F1 =

.
証 明.
利用 Corollary
3.1.5 我們當然可以每次都用 simple extension
將

extends 到
L
L' 的 monomorphism. 不過這樣的 argument
總是不容易說清楚, 最好的方法還是用 induction. 由於
L 是
f (
x)
over
F1 的 splitting field, 所以
L/
F1 是 finite extension.
我們就針對 [
L :
F1] =
n 作 induction.
假設 [L : F1] = 1, 此時表示 L = F1, 所以令
=
即可. 若
[L : F1] = n > 1, 則由於此時 L
F1, 必存在 f (x) 的一個根
滿足
F1. 現若
p(x)
F1[x] 是
over F1 的 minimal polynomial, 由 minimal polynomial 的性質知
p(x) | f (x) in F1[x] (參見大學基礎代數講義Lemma 10.1.1). 故將
作用在多項式的係數得
p
(x) | f
(x) in F2[x]. 現因
f
(x) splits over L', 故可找到
L' 為 p
(x)
的一個根. 現利用 Corollary 3.1.5 知存在
: F1(
)
F2(
) 是 isomorphism 且滿足
|F1 =
.
現在我們檢查一下 induction 的假設條件. 首先我們有一 field
isomorphism
: F1(
)
F2(
). 再來由於
F1
F1(
)
L, 故知 L 仍為 f (x) over
F1(
) 的 splitting field. 再加上
extends to
且
f (x)
F1[x], 我們有
f
(x) = f
(x)
F2[x]
F2(
)[x] 且
L'/F2(
) 為 field extension 滿足
f
(x) splits over L'. 最後因
[F1(
) : F1] > 1, 故得
[L : F1(
)] = [L : F1]/[F1(
) : F1] < n. 所以可套用 induction
的假設知存在一 monomorphism
: L
L' 滿足
|F1(
) =
. 但由於
F1
F1(
), 知

|
F1 = (

|
F1(
))|
F1 =

|
F1 =

.
故得證本定理.
這個定理主要是講如何可以把一個 isomorphism 的定義域 extends
到大一點的 field. 千萬要注意, 這個定理必需要求 L 是 f (x) over
F1 的 splitting field. 不能僅假設 f (x) splits over F1
(因為若僅假設 f (x) splits over F1, 符合這樣的條件的 L
可能太大以致於無法將
extends to L). 另外要注意的是,
並不需要求
f (x)
F1[x] 是 irreducible. 還有僅需要求 f
(x)
splits over L', 而不需要求 L' 是 f
(x) over F2 的
splitting field. 不過若 L' 剛好是 f
(x) over F2 的
splitting field, 那麼
就會是一個 isomorphism.
Corollary 3.1.7
假設
F1 和
F2 是 isomorphic fields,

:
F1
F2 是一
isomorphism 且
f (
x)
F1[
x]. 若
L1 和
L2 分別是
f (
x)
over
F1 和
f
(
x) over
F2 的 splitting fields, 則存在一個
isomorphism

:
L1
L2 滿足

|
F1 =

.
証 明.
因
L2 是
f
(
x) over
F2 的 splitting field, 所以
f
(
x) splits over
L2, 故套用 Theorem
3.1.6 得

:
L1
L2 是一個 monomorphism 且滿足

|
F1 =

.
令
im(

) 為

的 image, 則得
[
L1 :
F1] = [im(

) :
F2]

[
L2 :
F2]. 另一方面將 Theorem
3.1.6 套用於

:
F2
F1, 可得
[
L2 :
F2]

[
L1 :
F1]. 故得
[
L1 :
F1] = [im(

) :
F2] = [
L2 :
F2],
也就是說
im(

) =
L2, 得證

是一個 isomorphism.
特別當 F1 = F2 = K 且
是 K 的 identity map (即對任意 a
K 皆有
(a) = a). 則對任意
f (x)
K[x], 由於
f
(x) = f (x)
故套用 Corollary 3.1.7 知: 若 L1 和 L2 都是 f (x) over
K 的 splitting field, 則存在一個 isomorphism
: L1
L2
滿足對任意 a
K 皆有
(a) =
(a) = a. 也就是說
: L1
L2 是一個 K-isomorphism, 亦即 L1 和 L2 是
isomorphic over K. 我們將這個結果寫下.
Proposition 3.1.8
假設
K 是一個 field 且
f (
x)
K[
x]. 則所有
f (
x) over
K 的
splitting fields 皆 isomorphic over
K.
一般來說, 若
: L1
L2 是一個 K-isomorphism, 則
會將 L1/K 中任意的 intermediate field F 送到 L2/K 的
intermediate field,
(F). 反之
: F2
F1 會將
L2/K 的 intermediate field 送到 L1/K 的 intermediate field.
另一方面若
Gal(L1/K), 則很容易驗證
o
o
Gal(L2/K). 因此我們可利用
定出一個
Gal(L1/K) 到
Gal(L2/K) 的 group
isomorphism. 總而言之, 當 L1 和 L2 是 isomorphic over K 時,
L1/K 和 L2/K 的 intermediate fields
之間有一個一對一的對應關係, 而且它們的 Galois groups,
Gal(L1/K)
和
Gal(L2/K) 是 isomorphic. 因此當我們要探討
f (x)
K[x] over
K 的 splitting field 其 Galois group 和 intermediate fields
的關係時, Proposition 3.1.8
告訴我們其實不必擔心是否會因所選的 splitting filed
不同而造成不同的結論.
下一頁: Normal Extension
上一頁: Normal Extension 和 Separable
前一頁: Normal Extension 和 Separable
  目 錄
Li
2006-05-18