next up previous
¤U¤@­¶: ¤@¨Ç Noncommutative Ring ¤W¤@­¶: ªì¯Å Ring ªº©Ê½è «e¤@­¶: Zero Divisor ©M Unit

Subring

¦b¬ã¨s group ®É§Ú­Ì´¿¸g±´°Q¹L subgroup. ¦P¼Ëªº¹ï©ó¤@­Ó ring §Ú­Ì¤]±´°Q¥¦ªº subring.

­º¥ý§Ú­Ìµ¹ subring ¤@­Ó¥¿¦¡ªº©w¸q.

Definition 5.4.1   ­Y R ¬O¤@­Ó ring, S $ \subseteq$ R ¥B§Q¥Î R ªº¥[ªk»P­¼ªk¬°¨ä¹Bºâ S ¤]¬O¤@­Ó ring, «hºÙ S ¬O R ªº¤@­Ó subring.

ÁöµM S ¥²¶·²Å¦X (R1) ¨ì (R8) ªº©Ê½è S ¤ ¥i¦¨¬° R ªº¤@­Ó subring, ¤£¹L©M subgroup ªº±¡ªp¤@¼Ëµ²¦X²v¦]¦b R ¤¤¤w¸g²Å¦X¤F©Ò¥H (R2) ©M (R7) ¬O¤£¥²Àˬdªº. ¥t¥ ¥[ªkªº¥æ´«©Ê (R5) ©M¤À°t²v (R8) ¤]¦b R ¤¤¤w²Å¦X¤F©Ò¥H§Ú­Ì¥u­nÀˬd (R1), (R3), (R4) ©M (R5). ¤]´N¬O»¡§Ú­Ì¥u­nÀˬd S ¦b¥[ªk¤§¤U¬O§_¬° R ¥[ªk¤§¤Uªº subgroup ¥H¤Î S ¦b­¼ªk¤§¤U¬O§_«Ê³¬´N¥i¥H¤F. ¦]¦¹§Ú­Ì¦³¥H¤U¤§µ²ªG.

Lemma 5.4.2   ­Y R ¬O¤@­Ó ring, S $ \subseteq$ R. ¦pªG¹ï©ó¥ô·Nªº a, b $ \in$ S ¬Ò¦³ a - b $ \in$ S ¥B a . b $ \in$ S, «h S ¬O R ªº subring.

µý ©ú. ¥Ñ Lemma 1.3.4 ª¾, ­Y¹ï¥ô·N a, b $ \in$ S ¬Ò¦³ a - b $ \in$ S, ªí¥Ü S ¦b¥[ªk¤§¤U¬O R ªº subgroup. ¦A¥[¤W a . b $ \in$ S ªí¥Ü­¼ªk¬O«Ê³¬ªº, ©Ò¥H S ¬O R ªº¤@­Ó subring. $ \qedsymbol$

Example 5.4.3   Åý§Ú­Ì¦Ò¼ $ \mathbb {Z}$/6$ \mathbb {Z}$ ¦³­þ¨Ç subring? ¥Ñ©ó subring ¦b¥[ªk¤§¤U¤@©w¬O subgroup. ©Ò¥H§Ú­Ì¥u­n¥ý§â $ \mathbb {Z}$/6$ \mathbb {Z}$ ¥[ªkªº subgroup ³£§ä¥X¨Ó, ¦A¬Ý¬Ý¥L­Ì¬O§_­¼ªk«Ê³¬´N¥i¥H¤F. ¦] $ \mathbb {Z}$/6$ \mathbb {Z}$ ¦b¥[ªk¤§¤U¬O¤@­Ó order 6 = 2×3 ªº abelian group, ¥Ñ Lagrange ©M Cauchy ©w²z (Theorem 2.2.2 & Theorem 3.3.2) ª¾¨ä¦³ order 3 ©M order 2 ªº subgroups (¨Æ¹ê¤W³o¥i¥H¥Ñ $ \mathbb {Z}$/6$ \mathbb {Z}$ ¦b¥[ªk¤§¤U¬O¤@­Ó cyclic group ª½±µ¬Ý¥X). ¤]´N¬O {$ \overline{0}$,$ \overline{2}$,$ \overline{4}$} ©M {$ \overline{0}$,$ \overline{3}$} ³o¨â­Ó subgroups. «Ü®e©ö´N¥i¥Hª¾¹D³o¨â­Ó¤l¶°¦X³£¬O­¼ªk«Ê³¬ªº, ©Ò¥H¥¦­Ì¤]³£¬O $ \mathbb {Z}$/6$ \mathbb {Z}$ ªº subrings.

¦b°Q½× subgroup ®É§Ú­Ì´£¹L: ­Y G ¬O¤@­Ó group, H ¬°¨ä subgroup, «h H ªº identity ´N¬O G ªº identity. ©Ò¥H·í R ¬O¤@­Ó ring ®É, ­Y S ¬°¨ä subring, «h S ªº 0 ´N¬O R ªº 0. ¤£¹L¦] R ©M S ªº­¼ªk¤£¤@©w¬O group, §Y¨Ï R ¦³­¼ªkªº identity 1, S ¥¼¥²·|¦³ 1. Áa¨Ï S ¦³ 1, S ªº 1 ©M R ªº 1 ¤]¥¼¥²¬Û¦P. ¨Ò¦p«e­± Example 5.4.3 ¤¤ $ \mathbb {Z}$/6$ \mathbb {Z}$ ªº 1 ¬O $ \overline{1}$. ¦Ó¦b {$ \overline{0}$,$ \overline{2}$,$ \overline{4}$} ³o­Ó subring ¤¤

$\displaystyle \overline{0}$ . $\displaystyle \overline{4}$ = $\displaystyle \overline{0}$,    $\displaystyle \overline{2}$ . $\displaystyle \overline{4}$ = $\displaystyle \overline{2}$,    $\displaystyle \overline{4}$ . $\displaystyle \overline{4}$ = $\displaystyle \overline{4}$,

©Ò¥H $ \overline{4}$ ¬O {$ \overline{0}$,$ \overline{2}$,$ \overline{4}$} ³o­Ó subring ªº 1. ª`·N³o¨Ã¨S¦³©M«e­±´£¹L¤@­Ó ring ­Y¦³­¼ªkªº identity «h¨ä identity °ß¤@¬Û¹H­I. $ \overline{1}$ ¬O $ \mathbb {Z}$/6$ \mathbb {Z}$ ¤¤°ß¤@ªº 1, ¦Ó $ \overline{4}$ ¬O {$ \overline{0}$,$ \overline{2}$,$ \overline{4}$} ¤¤°ß¤@ªº 1. ¥u¬O $ \overline{4}$ ¦b $ \mathbb {Z}$/6$ \mathbb {Z}$ ¤¤¥¦¤£¦A¬O 1 ½¤F! (¥¦¸I¨ì $ \overline{3}$ ©M $ \overline{5}$ ´N¨S»³¤F.)

¥t¥ ¤j®aÀ³¤]µo² $ \overline{4}$ ¦b $ \mathbb {Z}$/6$ \mathbb {Z}$ ¬O¤@­Ó zero-divisor, ¦ý¦b {$ \overline{0}$,$ \overline{2}$,$ \overline{4}$} ¤¤«o¬O¤@­Ó unit. ³o·íµM¤]¨S©M Lemma 5.3.7 (1) ¬Û½Ä¬ð, ¦]¬°³o¬O¦b¤£¦Pªº ring ¤§¤U. Á`¤§, ¤@­Ó ring ¤¤ªº¤¸¯À«Ü¥i¯à¦b ring ¤¤©M¦b subring ¤¤·|¦³ºIµM¤£¦Pªºªí².


next up previous
¤U¤@­¶: ¤@¨Ç Noncommutative Ring ¤W¤@­¶: ªì¯Å Ring ªº©Ê½è «e¤@­¶: Zero Divisor ©M Unit
Administrator 2005-06-18