¤U¤@¶: ¤@¨Ç Noncommutative Ring
¤W¤@¶: ªì¯Å Ring ªº©Ê½è
«e¤@¶: Zero Divisor ©M Unit
¦b¬ã¨s group ®É§ÚÌ´¿¸g±´°Q¹L subgroup.
¦P¼Ëªº¹ï©ó¤@Ó ring §Ṳ́]±´°Q¥¦ªº subring.
º¥ý§Ú̵¹ subring ¤@Ó¥¿¦¡ªº©w¸q.
Definition 5.4.1
Y
R ¬O¤@Ó ring,
S R ¥B§Q¥Î
R ªº¥[ªk»P¼ªk¬°¨ä¹Bºâ
S ¤]¬O¤@Ó ring,
«hºÙ
S ¬O
R ªº¤@Ó
subring.
ÁöµM S ¥²¶·²Å¦X (R1) ¨ì (R8) ªº©Ê½è S ¤ ¥i¦¨¬° R ªº¤@Ó
subring, ¤£¹L©M subgroup ªº±¡ªp¤@¼Ëµ²¦X²v¦]¦b R ¤¤¤w¸g²Å¦X¤F©Ò¥H
(R2) ©M (R7) ¬O¤£¥²Àˬdªº. ¥t¥ ¥[ªkªº¥æ´«©Ê (R5) ©M¤À°t²v (R8) ¤]¦b
R ¤¤¤w²Å¦X¤F©Ò¥H§ÚÌ¥unÀˬd (R1), (R3), (R4) ©M (R5).
¤]´N¬O»¡§ÚÌ¥unÀˬd S ¦b¥[ªk¤§¤U¬O§_¬° R ¥[ªk¤§¤Uªº subgroup
¥H¤Î S ¦b¼ªk¤§¤U¬O§_«Ê³¬´N¥i¥H¤F. ¦]¦¹§Ú̦³¥H¤U¤§µ²ªG.
Lemma 5.4.2
Y
R ¬O¤@Ó ring,
S R. ¦pªG¹ï©ó¥ô·Nªº
a,
b S ¬Ò¦³
a -
b S ¥B
a . b S, «h
S ¬O
R ªº subring.
µý ©ú.
¥Ñ Lemma
1.3.4 ª¾, Y¹ï¥ô·N
a,
b S ¬Ò¦³
a -
b S, ªí¥Ü
S ¦b¥[ªk¤§¤U¬O
R ªº subgroup. ¦A¥[¤W
a . b S
ªí¥Ü¼ªk¬O«Ê³¬ªº, ©Ò¥H
S ¬O
R ªº¤@Ó subring.
Example 5.4.3
Åý§Ú̦Ҽ
/6
¦³þ¨Ç subring? ¥Ñ©ó subring ¦b¥[ªk¤§¤U¤@©w¬O
subgroup. ©Ò¥H§ÚÌ¥un¥ý§â
/6
¥[ªkªº subgroup ³£§ä¥X¨Ó,
¦A¬Ý¬Ý¥L̬O§_¼ªk«Ê³¬´N¥i¥H¤F. ¦]
/6
¦b¥[ªk¤§¤U¬O¤@Ó order
6 = 2×3 ªº abelian group, ¥Ñ Lagrange ©M Cauchy ©w²z (Theorem
2.2.2 & Theorem
3.3.2) ª¾¨ä¦³ order 3 ©M order 2 ªº
subgroups (¨Æ¹ê¤W³o¥i¥H¥Ñ
/6
¦b¥[ªk¤§¤U¬O¤@Ó cyclic group
ª½±µ¬Ý¥X). ¤]´N¬O
{
,
,
} ©M
{
,
}
³o¨âÓ subgroups. «Ü®e©ö´N¥i¥Hª¾¹D³o¨âÓ¤l¶°¦X³£¬O¼ªk«Ê³¬ªº,
©Ò¥H¥¦Ì¤]³£¬O
/6
ªº subrings.
¦b°Q½× subgroup ®É§ÚÌ´£¹L: Y G ¬O¤@Ó group, H ¬°¨ä subgroup,
«h H ªº identity ´N¬O G ªº identity. ©Ò¥H·í R ¬O¤@Ó ring ®É,
Y S ¬°¨ä subring, «h S ªº 0 ´N¬O R ªº 0. ¤£¹L¦] R ©M
S ªº¼ªk¤£¤@©w¬O group, §Y¨Ï R ¦³¼ªkªº identity 1, S
¥¼¥²·|¦³ 1. Áa¨Ï S ¦³ 1, S ªº 1 ©M R ªº 1 ¤]¥¼¥²¬Û¦P.
¨Ò¦p«e± Example 5.4.3 ¤¤
/6 ªº 1 ¬O
. ¦Ó¦b
{,,} ³oÓ subring ¤¤
©Ò¥H
¬O
{,,} ³oÓ subring ªº 1.
ª`·N³o¨Ã¨S¦³©M«e±´£¹L¤@Ó ring Y¦³¼ªkªº identity «h¨ä identity
°ß¤@¬Û¹HI.
¬O
/6 ¤¤°ß¤@ªº 1, ¦Ó
¬O
{,,} ¤¤°ß¤@ªº 1. ¥u¬O
¦b
/6 ¤¤¥¦¤£¦A¬O 1 ½¤F! (¥¦¸I¨ì
©M
´N¨S»³¤F.)
¥t¥ ¤j®aÀ³¤]µo²
¦b
/6 ¬O¤@Ó zero-divisor, ¦ý¦b
{,,} ¤¤«o¬O¤@Ó unit. ³o·íµM¤]¨S©M Lemma
5.3.7 (1) ¬Û½Ä¬ð, ¦]¬°³o¬O¦b¤£¦Pªº ring ¤§¤U. Á`¤§, ¤@Ó ring
¤¤ªº¤¸¯À«Ü¥i¯à¦b ring ¤¤©M¦b subring ¤¤·|¦³ºIµM¤£¦Pªºªí².
¤U¤@¶: ¤@¨Ç Noncommutative Ring
¤W¤@¶: ªì¯Å Ring ªº©Ê½è
«e¤@¶: Zero Divisor ©M Unit
Administrator
2005-06-18