�� ��.
(1) �ڭ̧Q�βĤ@�� group action (
G,
S,*) ���ҩ�
r |
m. �Ѧ��l
(
4.19) ��: ����
P'
S, �ڭ̦�
r = |
G|/|
N(
P')|. ���L
Lemma
4.4.1 �i�D�ڭ�
P' �O
N(
P') �� subgroup. �ѩ�
|
P'| =
pn, Lagrange �w�z�i�D�ڭ� |
N(
P')| �O
pn ������, �S�ѩ�
N(
P') �O
G �� subgroup, �A�Τ@�� Lagrange �w�z�o
|
N(
P')| =
pnd
�䤤
d |
m. �G��
�]��
r |
m.
(2) �ڭ̧Q�βĤG�� group action (P, S,*) ���ҩ�
r
1(mod p). �] P �O�@�� p-group, �� Proposition 4.1.4 ��
r = | S| | S0|(mod p). |
(4.22) |
�ڭ̲{�b�ӭp�� |
S0|. �Ѧ��l (
4.20) ���Y
P'
S0 �h
P
N(
P'). ���L�e���w��
|
N(
P')| =
pnd, �䤤
d |
m.
�M�ӥ�
p
m ��
p
d, �]���� |
P| =
pn ��
P �O
N(
P')
���@�� Sylow
p-subgroup. �t�@�譱, �� Lemma
4.4.1 ��,
P'
�O
N(
P') �� normal subgroup. ��
P' �]�O
N(
P') �� Sylow
p-subgroup. Corollary
4.5.2 �i�D�ڭ�
P' �O
N(
P')
�ߤ@�� Sylow
p-subgroup. �G�o
P =
P'. ���y�ܻ�
S0 ���u�i�
P �o�Ӥ���. �]���Ѧ��l (
4.21) ��
S0 = {
P}, �]�N�O��
S0
�u���@�Ӥ���. �G�Ѧ��l (
4.22) �o
r 
1(mod
p).
Example 4.6.2 (1)
�ڭ̪��D�b
A4 �� Sylow 3-subgroup �ä��ߤ@ (Example
4.5.3), ����
A4 �쩳���h�֭� Sylow 3-subgroup �O? ���]��
r
��, �ѩ�
|
A4| = 4
. 3, �ѲĤT Sylow �w�z (Theorem
4.6.1)
��
r | 4 �B
r = 3
k + 1. �]�N�O
r = 1 ��
r = 4. �ѩ�w��
r
1,
�G�o
r = 4. �ƹ�W�b
A4 ����
(1 2 3), (1 2 4), (1 3 4), (2 3 4)
�o�|�� 3-cycles �ӧO���ͪ� cyclic group �Ҭ۲�, �G���o�ǴN�O�Ҧ�
A4 �� Sylow 3-subgroup.
(2) �b A5 �����h�� Sylow 5-subgroups �O? ���]�� r ��, �ѩ�
| A5| = 5!/2 = 5 . 12, �ѲĤT Sylow �w�z (Theorem 4.6.1) ��
r | 12 �B r = 5k + 1. �]�N�O r = 1 �� r = 6. �ѩ�w�� A5 �O
simple (Theorem 3.4.26) �ҥH A5 �� Sylow 5-subgroup ���i��O
A5 �� normal subgroup. �]���ѲĤG Sylow �w�z (Corollary
4.5.2) �� r
1. �G�o r = 6. �ƹ�W�b A5 ���Ҧ���
5-cycle �@�� 4! = 24 �� (���ƻ�O?
�o�O�������ƦC�զX�����ӤH�������D�a!). ���L���@�� 5-cycle
�Ҳ��ͪ� cyclic group ���� 4 �� 5-cycle �X�{.
�Ҧp:

(1 2 3 4 5)

= {(1 2 3 4 5),(1 3 5 2 4),(1 4 2 5 3),(1 5 4 3 2),
I}
�]���o 24 �� 5 cycle �u���� 24/4 = 6 �Ӭ۲��� order 5 ��
subgroup. �o�N�O�Ҧ�
A5 �� Sylow 5-subgroup.