next up previous
�U�@��: Sylow �w�z������ �W�@��: Third Sylow's Theorem �e�@��: Group action on the

Sylow p-subgroups ���Ӽ�

�ĤT Sylow �w�z�i�H���ڭ̥� G �� order �ӧP�_ G �� Sylow p-subgroups �j�P���h�֭�.

Theorem 4.6.1 (Third Sylow's Theorem)   �Y G �O�@�� group �B | G| = pnm, �䤤 n$ \ge$1, p �O�@�ӽ�ƥB p$ \nmid$m. �O r ���� G ���Ҧ� Sylow p-subgroup ���Ӽ�, �h

(1)    r | m;        (2)    r $\displaystyle \equiv$ 1(mod p).

�� ��. (1) �ڭ̧Q�βĤ@�� group action (G, S,*) ���ҩ� r | m. �Ѧ��l (4.19) ��: ���� P' $ \in$ S, �ڭ̦� r = | G|/| N(P')|. ���L Lemma 4.4.1 �i�D�ڭ� P' �O N(P') �� subgroup. �ѩ� | P'| = pn, Lagrange �w�z�i�D�ڭ� | N(P')| �O pn ������, �S�ѩ� N(P') �O G �� subgroup, �A�Τ@�� Lagrange �w�z�o | N(P')| = pnd �䤤 d | m. �G��

r = $\displaystyle {\frac{\vert G\vert}{\vert N(P')\vert}}$ = $\displaystyle {\frac{p^nm}{p^nd}}$ = $\displaystyle {\frac{m}{d}}$.

�]�� r | m.

(2) �ڭ̧Q�βĤG�� group action (P, S,*) ���ҩ� r $ \equiv$ 1(mod p). �] P �O�@�� p-group, �� Proposition 4.1.4 ��

r = | S| $\displaystyle \equiv$ | S0|(mod p). (4.22)

�ڭ̲{�b�ӭp�� | S0|. �Ѧ��l (4.20) ���Y P' $ \in$ S0 �h P $ \subseteq$ N(P'). ���L�e���w�� | N(P')| = pnd, �䤤 d | m. �M�ӥ� p$ \nmid$m �� p$ \nmid$d, �]���� | P| = pn �� P �O N(P') ���@�� Sylow p-subgroup. �t�@�譱, �� Lemma 4.4.1 ��, P' �O N(P') �� normal subgroup. �� P' �]�O N(P') �� Sylow p-subgroup. Corollary 4.5.2 �i�D�ڭ� P' �O N(P') �ߤ@�� Sylow p-subgroup. �G�o P = P'. ���y�ܻ� S0 ���u�i�঳ P �o�Ӥ���. �]���Ѧ��l (4.21) �� S0 = {P}, �]�N�O�� S0 �u���@�Ӥ���. �G�Ѧ��l (4.22) �o r $ \equiv$ 1(mod p). $ \qedsymbol$

Example 4.6.2 (1)   �ڭ̪��D�b A4 �� Sylow 3-subgroup �ä��ߤ@ (Example 4.5.3), ���� A4 �쩳���h�֭� Sylow 3-subgroup �O? ���]�� r ��, �ѩ� | A4| = 4 . 3, �ѲĤT Sylow �w�z (Theorem 4.6.1) �� r | 4 �B r = 3k + 1. �]�N�O r = 1 �� r = 4. �ѩ�w�� r$ \ne$1, �G�o r = 4. �ƹ�W�b A4 ����

(1  2  3),    (1  2  4),    (1  3  4),    (2  3  4)

�o�|�� 3-cycles �ӧO���ͪ� cyclic group �Ҭ۲�, �G���o�ǴN�O�Ҧ� A4 �� Sylow 3-subgroup.

(2) �b A5 �����h�� Sylow 5-subgroups �O? ���]�� r ��, �ѩ� | A5| = 5!/2 = 5 . 12, �ѲĤT Sylow �w�z (Theorem 4.6.1) �� r | 12 �B r = 5k + 1. �]�N�O r = 1 �� r = 6. �ѩ�w�� A5 �O simple (Theorem 3.4.26) �ҥH A5 �� Sylow 5-subgroup ���i��O A5 �� normal subgroup. �]���ѲĤG Sylow �w�z (Corollary 4.5.2) �� r$ \ne$1. �G�o r = 6. �ƹ�W�b A5 ���Ҧ��� 5-cycle �@�� 4! = 24 �� (���ƻ�O? �o�O�������ƦC�զX�����ӤH����઺���D�a!). ���L���@�� 5-cycle �Ҳ��ͪ� cyclic group ���� 4 �� 5-cycle �X�{. �Ҧp:

$\displaystyle \langle$(1  2  3  4  5)$\displaystyle \rangle$ = {(1  2  3  4  5),(1  3  5  2  4),(1  4  2  5  3),(1  5  4  3  2), I}

�]���o 24 �� 5 cycle �u���� 24/4 = 6 �Ӭ۲��� order 5 �� subgroup. �o�N�O�Ҧ� A5 �� Sylow 5-subgroup.

�j�a���n�Q Example 4.6.2 �~��. �ĤT Sylow �w�z�ä��O�U�F��, �@��ӻ��ä�����Ѥ@�� group �� order �A�Q�βĤT Sylow �w�z�N���X���h�֭� Sylow p-subgroup. ���ɭn�[�J�ҦҼ{�� group ���ʽ�, �Ҧp�b A5 �� Sylow 2-subgroup �u�� Third Sylow's Theorem �Ӻ�N���i�঳ 3, 5 �� 15 ��. �ҥH�n�i�@�h���Ҷq�~�i��X�u�����X��.


next up previous
�U�@��: Sylow �w�z������ �W�@��: Third Sylow's Theorem �e�@��: Group action on the
Administrator 2005-06-18