¦^ÅU¤@¤U©Ò¿× F ¬O¤@Ó finite field ´N¬O»¡ F ¬O¤@Ó field ¥B F
ªº¤¸¯ÀÓ¼Æ (³q±`§ÚÌ¥Î
F
¨Óªí¥Ü) ¬O¦³¦hÓ.
¥Ñ³oÓ©w¸q§Ṵ́¨¤Wª¾Y F ¬O finite field, «h F ªº characteristic
¤@©w¬O¤@Ó½è¼Æ p (Lemma 9.2.3). ·íªì§ÚÌ©w
characteristic ¬O§Q¥Î¤@Ó ring homomorphism
:
F,
¨ä¤¤¹ï¥ô·N
n
§ÚÌ©w
(n) = n1, ¦Ó
(- n) = n(- 1). F
ªº characteristic ¬O p ªí¥Ü
ker(
) =
p
. ¦]¦¹¥Ñ ring ªº
1st Isomorphism Theorem §Ú̪¾
/
p
im(
)
F. §O§Ñ¤F p ¬O½è¼Æ, ¬Gª¾
p
·|¬O
ªº¤@Ó maximal ideal, ¦]¦¹
/
p
¬O¤@Ó field. ¤S¦]
/
p
= p, §Ú̱o F ¤¤¦s¦b¤@Ó subfield ©M
/
p
³oÓ p Ó¤¸¯Àªº finite field ¬O isomorphic ªº.
¬°¤F¤è«K§Ú̱N³oÓ p Ó¤¸¯Àªº finite field °O¬°:
p.
¬JµM F ¬O
p ªº¤@Ó extension, §ÚÌ·íµM´N¥i¥H§â F
¬Ý¦¨¬O¤@Ó vector space over
p. ¨º»ò F ·|¤£·|¬O finite
dimensional over
p ©O? ¤j®a¥i¯à³£·|²q·Q·|, ¦ý¬O«ç»òÃÒ©O?
¤@¯ë¨Ó»¡§ÚÌnÃÒ©ú¤@Ó vector space V ¬O finite dimensional over
¤@Ó field K, §ÚÌ¥unÃÒ©ú V ¤¤¥i¥H§ä¨ì¦³¦hÓ¤¸¯À span V
over K. ²¦b¥Ñ©ó F ¬O finite field, ´N°²³]
F
= n §a, ¨º»ò
F ¤¤©Ò¦³ªº¤¸¯À·íµM span F over
p ¤F (¦]¬°¨CÓ a
F
³£¥i¥H¬Ý¦¨¬O
a = 1 . a). ©Ò¥H¥Ñ Lemma 9.3.4 (1) ª¾
dim
p(F)
n. ·íµM§Ú̳oÓ¦ôpªº dimension ¬O«D±`²Ê²¤,
¤£¹L§Ú̥ثeªº¥Øªº¥u¬Onª¾¹D F ¬O
p ªº¤@Ó finite extension.
ºî¦X¥H¤Wªºµ²ªG§ÚÌ¥i¥H±o¨ì¥H¤U finite field ²Ä¤@Ó«nªº©Ê½è.
³o§¹¥þ¬O¤@Ó½u©Ê¥N¼Æªº°ÝÃD. ¥Ñ
dimp(F) = [F :
p] = k
ªº°²³]ª¾¦s¦b
a1,..., ak
F ¬O¤@²Õ F over
p ªº basis.
¥Ñ basis ªº©w¸qª¾¹ï¥ô·Nªº
F, ¦s¦b¤@²Õ°ß¤@ªº
c1,..., ck
p ¨Ï±o
= c1 . a1 + ... + ck . ak. (³o¸Ìªº¦s¦b¬O¦]¬°
a1,..., ak span F over
p,
¦Ó°ß¤@¬O¦]¬°
a1,..., ak ¬O linearly independent over
p.)
ª`·N³o¸Ìªº
a1,..., ak ¬O©T©wªº¤@²Õ basis, ¦Ó
c1,..., ck
p ·|ÀHµÛ
F ªº§ïÅܦӧïÅÜ. ´«¨¥¤§
F ¤¤ªº¥ô¤@Ó¤¸¯À³£¥Ñ°ß¤@ªº¤@²Õ
c1, ... , ck ©Ò¨M©w. ¦ý¥Ñ©ó³o¨Ç
ci ¬Ò¦b
p ¤¤¦Ó
p
= p, ¦]¦¹¹ï¨CÓ
i
{1,..., k}, ci ³£¦³ p Ó¿ï¾Ü, ¬Gª¾³o¨Ç
c1,..., ck
¦@¦³ pk Ó¿ï¾Ü. ¤]´N¬O»¡ F ¤¤¦@¦³ pk Ó¤¸¯À.
Theorem 10.4.1 ²³æ¨Ó»¡´N¬O§i¶D§Ų́C¤@Ó finite field ¨ä¤¸¯ÀªºÓ¼ÆÀ³¸Ó¬O pk Ó³oºØ§Î¦¡. ©Ò¥H¤£¥i¯à¦³ finite field ¦³ 6 Ó¤¸¯À; ¤£¹L Theorem 10.4.1 ¤]¨S¦³§i¶D§Ų́쩳¦³¨S¦³ finite field ¦³ 9 Ó¤¸¯À©Î 16 Ó¤¸¯Àµ¥µ¥. °¨¤W§ÚÌ´Nn¦^µª³oÓ°ÝÃD, ¤£¹L¦b¦¹¤§«e§ÚÌ¥ý½Í½Í finite field ªº¼ªkµ²ºc.
°²³] F ¬O¤@Ó finite field, ¦]¬° F ¬O field, ¥Ñ Corollary
9.1.2 ª¾
F* = F {0} ¦b¼ªk¤§¤U¬O¤@Ó abelian
group. ¤S¦]¬° F ¥u¦³¦³Ó¤¸¯À, ©Ò¥H§Ú̪¾¹D F* ¬O¤@Ó finite
abelian group. ¬JµM F* ¬O¤@Ó finite group, §Q¥Î Lagrange's
Theorem §Ú̦³¥H¤U¤§µ²ªG.
nª`·N Lagrange's Theorem ¬O¹ï¤@¯ëªº finite group ³£¹ïªº, ©Ò¥H Proposition 10.4.2 ¨Ã¨S¦³¥Î¨ì F* ¬O abelian ªº©Ê½è. ±µ¤U¨Ó§ÚÌn¥Î¨ì finite abelian group ªº«n©Ê½è¨ÓÃÒ©ú¨Æ¹ê¤W F* ¬O¤@Ó cyclic group. ¦^ÅU¤@¤U finite abelian group ªº fundamental theorem (Theorem 3.3.11) ¬O»¡¥ô·Nªº finite abelian group ³£¥i¼g¦¨¤@¨Ç cyclic groups ªº direct product. ¥t¥ nª`·Nªº¬OY Cn ªí¥Ü¬O¤@Ó cyclic group of order n, «h Cn×Cm ¤£¨£±o·| isomorphic to Cnm, °£«D n ©M m ¬O¤¬½èªº (Proposition 3.2.2).
§Ú̧Q¥Î¤ÏÃÒªk, ¬°¤F¤è«K´N°²³] n1 ©M n2 ¤£¤¬½è¦n¤F
(¨ä¥Lªºª¬ªp³£¬O¥Î¬Û¦PªºÃÒ©ú). ³oªí¥Ü¦s¦b¤@½è¼Æ q ¬O n1 ©M n2
ªº¤½¦]¼Æ. ¦]¬° q | n1 ¥B q ¬O½è¼Æ, Cauchy's ©w²z (Theorem
3.3.2 ©Î Theorem 4.2.1) §i¶D§Ú̦s¦b
a Cn1
º¡¨¬
ord(a) = q. ¤]´N¬O»¡
a, a2,..., aq - 1, aq = e1 ¬O
Cn1 ¤¤ q Ó¬Û²§ªº¤¸¯À (³o¸Ì§Ú̥Πei ¨Óªí¥Ü Cni ªº
identity). ¦P²z§Ú̪¾¦b Cn2 ¤¤¦s¦b
b
Cn2 º¡¨¬
ord(b) = q. ²¦Ò¼
F* ¬O cyclic ªí¥Ü¦s¦b a F* ¨Ï±o©Ò¦³ F* ¤¤ªº¤¸¯À³£¬O
ai ³oºØ§Î¦¡, ©Ò¥H§Ú̦³¥H¤U³oÓ«nªº©Ê½è.
¥Ñ©ó¤wª¾
F
= pk, ¬G§Q¥Î Theorem 10.4.1 ª¾
[
p(a) :
p] = [F :
p] = k. ¦]¦¹¥Ñ Corollary 10.1.7 ª¾ a
over
p ªº minimal polynomial ªº degree ¬° k, ¬G¥Ñ©w¸qª¾ a
over
p ªº degree ¬° k.
±µ¤U¨Ó§ÚÌnÃÒ finite field ªº¦s¦b©Ê, §Yµ¹©w¥ô¤@½è¼Æ p ¥H¤Î
k
, §ÚÌn§ä¨ì¤@Ó finite field F ¨ä¤¸¯ÀÓ¼Æè¦n¬O pk.
º¥ýª`·N·í k = 1 ®É
/
p
´N¬O¤@Ó¤¸¯ÀӼƬ° p ªº finite
filed, ¬°¤F¤è«K§Ú̱N¦¹ filed °O¬°
p. Theorem 10.4.1
§i¶D§Ṳ́@Ó¤¸¯ÀӼƬ° pk ªº finite filed F Y¦s¦b, «h F
¤@©w·|¬O
p ªº¤@Ó extension. ¥t¥ Proposition 10.4.2
§i¶D§Ú̦b¦¹±¡§Î xpk - x ¦b F ¤¤¥²©w splits into linear
factors. ¦]¦¹n´M§ä F ¥²¶·±q³o¨âÓÆ[ÂI¥Xµo.
§Ú̺¥ýÃÒ©ú F ¬O¤@Ó filed. §Q¥Î Lemma 9.1.4,
§ÚÌ¥unÀˬd¹ï¥ô·N a, b F ¥B b
0 ¬Ò¦³ a - b
F ¥H¤Î
a/b
F §Y¥i. a - b ¥H¤Î a/b ·íµM³£¬O L ªº¤¸¯À, ¦A¥[¤W¥Ñ
Lemma 9.2.5 §Ú̦³
±µ¤U¨ÓnÃÒ©ú
F
= pk. nª`·N¥Ñ°²³] xpk - x splits into
linear factors in L, §ÚÌ¥u¯àª¾ F ªº¤¸¯ÀӼƦܦh¦³ pk Ó,
°£«D¯àÃÒ±o xpk - x ¨S¦³«®Ú. nÃÒ©ú xpk - x ¨S¦³«®Ú,
§ÚÌ¥ý¥ô¨ú a
L ¬O xpk - x ªº¤@Ó®Ú, ¥Ñ Lemma 10.3.1
ª¾¦s¦b
h(x)
L[x] ¨Ï±o
xpk - x = (x - a) . h(x). Y±o
h(a)
0, «hª¾ a ¤£¬O«®Ú. µM¦Ó§Q¥Î Lemma 9.2.6, §Ú̪¾¹D
(x - a)pk - (x - a) = xpk - apk - x + a. ¥Ñ©ó apk = a (¦]°²³]
a ¬O xpk - x ªº¤@Ó®Ú), ¬G±o
§Q¥Î finite field ªº¦s¦b©Ê¥H¤ÎCorollary 10.4.4, §Ṵ́¨¤W¦³¥H¤UªºÀ³¥Î.
±µ¤U¨Ó§Ų́Ӭݦb
p[x] ¤¤ªº irreducible element ªº¯S©Ê.
³Ì«á§Ų́Ӭݦ³Ãö finite field ªº°ß¤@©Ê. §Ú̱NÃÒ©úY K ©M L ³£¬O
finite field ¥B
K
=
L
«h K
L.
º¥ýn±j½Õªº¬O³o¸Ìªº isomorphic «üªº¬O ring ªº isomorphism.
¤j®a©Î³Ù°O±o¦b½u©Ê¥N¼Æ¤¤¨âÓ vector space Y dimension ¬Û¦P,
«h¥¦Ì¤§¶¡¬O isomorphic. ¤£¹L³o¸Ìªº isomorphic ¬O«ü vector space
¶¡ªº isomorphism, n¨Dªº¨ç¼Æ¬O linear transformation, ¶È«O«ù¥[ªkªºµ²ºc.
¥t¥ K* ©M L* ¬O¤¸¯ÀӼƬۦPªº cyclic group, ±q Theorem
3.1.1 ª¾ K* ©M L* ¤]¬O isomorphic. ¤£¹L³o¸Ìªº
isomorphic «üªº¬O group ªº isomorphism, ¶È«O«ù¼ªkªºµ²ºc. ³o¨âºØ
isomorphic ³£¤£¯à«OÃÒ K ©M L ¶¡¦s¦bµÛ ring isomorphism.
§Ú̪ºÃÒ©ú¤£¬O¯uªº§ä¨ì K ªº L ªº ring isomorphism.
¦Ó¬O·Q§ä¨ì¤@Ó field F º¡¨¬ K
F ¥B F
L, «h§Q¥Î
isomorphism ªº transitivity ©Ê½è±oÃÒ K
L.
²¦b¬Ý¤@¯ë
K
=
L
= pk ªº±¡§Î. ¥Ñ©ó©Ò¦³¤¸¯ÀӼƬ° p ªº
finite field ¬Ò isomorphic, ©Ò¥H§ÚÌ¥i¥H°²³] K ©M L ³£¬O
p
ªº extension, ¨ä¤¤
p ´N¬O¤¸¯ÀӼƬ° p ªº finite field. ¥Ñ©ó
K
= pk, §Q¥Î Corollary 10.4.4 ª¾¦s¦b a
K ¨Ï±o
p(a) = K ¥B a over
p ªº minimal polynomial g(x) ªº
degree ¬O k. ¦]¦¹¥Ñ Corollary 10.1.7 ±o
©Î³P¾ÇÌ·|·Q¹ï L ¦pªkªw»s±o¨ì
L
p[x]/
g(x)
.
¨Æ¹ê¤W³o¬O¤£¦æªº, ¦]¬°ÁöµM Corollary 10.4.4 §i¶D§Ú̦s¦b a'
L ¨Ï±o
L =
p(a'), ¤£¹L a' over
p ªº minimal polynomial
¤£¨£±o´N¬O g(x). n§JªA³oÓ§xÃø§Ú̱o§Q¥Î Lemma 10.4.7.
º¥ý, ¥Ñ©ó
L
= pk, Proposition 10.4.2 §i¶D§ÚÌ
xpk - x splits into linear factors in L. ¤£¹L¥Ñ©ó g(x) ¦b
p[x] ¤¤¬O irreducible (Lemma 10.1.1), ¦]¦¹¥Ñ Lemma
10.4.7 ±oª¾
g(x) | xpk - x. ©Ò¥H g(x) ¤] splits into
linear factors in L. ´«¨¥¤§¦b L ¤¤¦s¦b b
L º¡¨¬ g(b) = 0.
·íµM¤F g(x) ¬O b over
p ªº minimal polynomial. ì¦]¬O b
over
p ªº minimal polynomial ¤@©w¬O g(x) ªº divisor (Lemma
10.1.1) ¦ý g(x) ¬O irreducible ¥B¨âªÌ¬Ò¬° monic polynomial,
¬G±oÃÒ g(x) ¬O b over
p ªº minimal polynomial. ¦]¦¹¥Ñ
Corollary 10.1.7 ª¾
Ãö©ó¤j¾Ç°ò¦¥N¼Æ¤¤ field ªº©Ê½è, §ÚÌ´N¤¶²Ð¦Ü¦¹. §Ų́èS¦³Ä²¤Î©Ò¿×ªº Galois Theory, ¤£¹L¤w¦³¨¬°÷ªº¹w³Æª¾ÃÑ. Y¦P¾Ç̹糧Á¿¸q¤¤ªº field ²z½×«Ü²M·¡¤F, À³¸Ó¥i¥H§ó¶i¤@¨Bªº¥h¤F¸Ñ Galois Theory.