º¥ýª`·N·í a L ¬O algebraic over F ®É, ¨Æ¹ê¤Wº¡¨¬
f (x)
F[x] ¥B f (a) = 0 ªº¦h¶µ¦¡¦³µL½a¦hÓ. ¤£¹L³o¨ä¤¤¦³¤@Ó¬Û·í¯S§O.
§Ú̺¥ý¥i¥H¦Ò¼º¡¨¬ f (a) = 0 ªº
f (x)
F[x] ¤¤ degree ³Ì¤pªº
polynomials. ³o¼Ëªº polynomials ¦³¥H¤U¨âÓ«nªº©Ê½è.
(2) °²³] f (x) ¦b F[x] ¤¤¤£¬O irreducible, §Y¦s¦b
h(x), l (x) F[x] º¡¨¬
deg(h(x)) < deg(f (x)),
deg(l (x)) < deg(f (x)) ¥B
f (x) = h(x) . l (x). ±N a ¥N¤J¤W¦¡, ¥Ñ f (a) = 0 ª¾
h(a) . l (a) = 0. ¥Ñ©ó
h(x), l (x)
F[x] ¥B a
L, §Ú̪¾
h(a), l (a)
L. ¬G¥Ñ L ¬O integral domain (Lemma 9.1.1) ±o h(a) = 0 ©Î
l (a) = 0. ³o¦A¦¸©M f (x) ªº¿ï¨ú¬Û¥Ù¬Þ, ¬Gª¾ f (x) ¬O F[x] ¤¤ªº
irreducible element.
Y
f (x) F[x] ¬O F[x] ¤¤²Å¦X f (a) = 0 degree ³Ì¤pªº polynomial
¥B
g(x)
F[x] º¡¨¬ g(a) = 0, «h¥Ñ Lemma 10.1.1 (1) ª¾
g(x)
f (x)
. ²¦b¦pªG g(x) ¤]¬O F[x] ¤¤²Å¦X g(a) = 0
degree ³Ì¤pªº polynomial, «h¥i±o
f (x)
=
g(x)
. ¥Ñ©ó
F[x] ¤¤ªº unit ³£¬O F ¤¤ªº«D 0 ¤¸¯À (Proposition 7.2.3)
§Q¥Î Lemma 8.1.3 ª¾¦s¦b c
F ¨Ï±o
f (x) = c . g(x).
©Ò¥H¦pªG§Ú̱N³o¨Ç¦¸¼Æ³Ì§C¦Óº¡¨¬ f (a) = 0 ªº polynomial
°£¥H¥¦Ìªº³Ì°ª¦¸¶µ«Y¼Æ©Ò±oªº monic polynomial ´N°ß¤@¤F.
¦]¦¹§Ú̦³¥H¤U¤§©w¸q.
§Ú̪¾¹D·í [L : F] ¬O¦³ªº®ÉÔ, L ¤¤ªº¤¸¯À³£¬O algebraic over
F. Y [L : F] = n ¥B a L, «h¥Ñ©ó
1, a,..., an ¤@©w linearly
independent over F, ¬Gª¾¦s¦b
f (x)
F[x] ¥B
deg(f (x))
n
¨Ï±o f (a) = 0 (¸Ô¨£ Theorem 9.3.7 ªºµý©ú) ¬G¥Ñ minimal
polynomial ªº©w¸qª¾: Y p(x) ¬O a ªº minimal polynomial, «h
deg(p(x))
deg(f (x))
n. ´«¨¥¤§§Ú̱o a ªº degree
¤p©ó©Îµ¥©ó [L : F]. §Ú̱N³oÓµ²ªG¼g¦¨¥H¤U¤§ Lemma.
·í L ¤£¬O finite extension over F ®É, L ¤¤·íµM¦³¥i¯à¦s¦b¤¸¯À¬O
algebraic over F. ¦pªG a L ¬O algebraic over F, §ÚÌ·Qª¾¹D
F ©M L ¤§¶¡¬O§_¥i¥H§ä¨ì¤@Ó field K ¬O F ªº¤@Ó finite
extension º¡¨¬ a
K?
¤°»ò¬O
ker() ©O? ¥Ñ©ó F[x] ¬O¤@Ó principle ideal domain ¥B
ker(
) ¬O F[x] ªº¤@Ó ideal, §Ú̪¾¦s¦b
p(x)
f[x] ¨Ï±o
ker(
) =
p(x)
. ¨Æ¹ê¤W §ÚÌ¥i¥H¦³
ker(
) =
p(x)
¨ä¤¤ p(x) ¬O a ªº minimal polynomial. ³o¬O¦]¬°Y
f (x)
ker(
), «hª¾
(f (x)) = f (a) = 0. ¬G¥Ñ Lemma 10.1.1
ª¾
f (x)
p(x)
. ¤Ï¤§, ¹ï¥ô·N
f (x)
p(x)
, ¦s¦b
h(x)
F[x] ¨Ï±o
f (x) = p(x) . h(x), ¦]¦¹¥Ñ p(a) = 0 ±o
f (a) = p(a) . h(a) = 0. ¬G±oÃÒ
ker(
) =
p(x)
, ¨ä¤¤ p(x)
¬O a ªº minimal polynomial.
²¥Ñ First Isomorphism Theorem (6.4.2) ª¾
¦Ü©ó¤°»ò¬O
im() ©O? ¥Ñ©w¸qª¾
Y¶È¥Ñ©w¸q¨Ó¬Ý Proposition 10.1.5 ¤¤ªº
im() = {f (a) | f (x)
F[x]} ¥u¬O¤@Ó ring, ¨º¬°¦ó¥¦·|¬O field ©O? Y§A°O±o
Theorem 9.3.7 ³o´N¤@ÂI³£¤£©_©Ç¤F. ¦]¬°
im(
)
L ¦ÛµM¬O integral domain, ¦Ó¥Ñ Proposition
10.1.5 ªºÃÒ©ú¤]ª¾
dimF(im(
)) = n.
§Ṳ́]«Ü®e©öÀˬd
{f (a) | f (x) F[x]} ·|¬O L ¤¤¥]§t F
¥H¤Î a ³Ì¤pªº ring, ³o¬O¦]¬°Y R ¬O¤@Ó ring ¥B¥]§t F ¥H¤Î
a, «h¹ï¥ô·Nªº
f (x)
F[x], ¥Ñ©ó f (a) ¶È²o¯A¨ì a ©M F
¤¤ªº¤¸¯À¶¡ªº¥[ªk¥H¤Î¼ªk, §O§Ñ¤F³o¨Ç³£¬O R ¤¤¤¸¯Àªº¹Bºâ©Ò¥H·íµM±o
f (a)
R. ´«¨¥¤§§Ú̱o
{f (a) | f (x)
F[x]}
R,
¦A¥[¤W
{f (a) | f (x)
F[x]} ¥»¨¬O¤@Ó ring ©Ò¥H¥¦¦ÛµM¬O¥]§t
F ¥H¤Î a ³Ì¤pªº ring ¤F!
¬°¤F¤è«K§ÚÌ©w¥H¤U¤§²Å¸¹, ¦b¤@¯ëªº¥N¼Æ®Ñ¤W³oÓ©w¸q¬O¼Ð·Çªº¥B±`³Q¨Ï¥Îªº©w¸q.
«e±¤wª¾ F[a] ´N¬O
im() = {f (a) | f (x)
F[x]}. ¨º»ò
F(a) ¤¤ªº¤¸¯À¤S¬O«ç¼Ë©O? §Q¥Î quotient field ªº©Ê½è (Proposition
7.4.2) «Ü®e©öÅçÃÒ
±µ¤U¨Ó§ÚÌ´N¨Ó¬Ý©M a ¬O algebraic over F µ¥»ùªº±ø¥ó¬O¤°»ò?
(2) (3): Y K ¬O L over F ªº subextension (§Y
F
K
L), «h¥Ñ°²³] a
K ª¾
F[a]
K.
¦A¥Ñ°²³] K ¬O F ªº¤@Ó finite extension, ®M¥Î Proposition
9.4.3 ¥i±o F[a] ¬O¤@Ó field. ¬Gª¾ F[a] = F(a).
(3) (1): °²³] F[a] = F(a), ¤]´N¬O»¡ F[a] ¬O¤@Ó
field. ¦pªG a = 0
F, ¨º·íµM a ¬O algebraic over F (ª`·N F
¤¤ªº¤¸¯À·íµM¬O algebraic over F). ¦pªG a
0, «h¥Ñ a
F[a]
¥B F[a] ¬O¤@Ó field ª¾
a-1
F[a]. §O§Ñ¤F F[a]
¸Ìªº¤¸¯À³£¬O f (a), ¨ä¤¤
f (x)
F[x] ³oºØ§Î¦¡, ©Ò¥H§Ú̦³
a-1 = f (a), ¨ä¤¤
Theorem 10.1.9 µ¹¤F§Ṳ́@ӫܦnªº¤èªk¨ÓÅçÃÒ a ¬O§_¬O
algebraic over F. ¤]´N¬O»¡¤µ«ánÀˬd a ¬O algebraic over F
§ÚÌ¥i¥H¤£¥²¯uªº¥h§ä¤@Ó
f (x) F[x] ¨Ï±o f (a) = 0.
·íµM¤Fn¥Î¤°Ì¤èªk·|¦]°ÝÃD¦Ó¦³©Ò®t§O. ¤ñ¤è»¡Y a2
L ¥B§Ú̪¾
a2 ¬O algebraic over F, ¦pªG
f (x)
F[x] º¡¨¬ f (a2) = 0,
«h¥O
g(x) = f (x2), §ÚÌ¥i±o
g(a) = f (a2) = 0. ¦]¦¹ª¾ a ¤]¬O
algebraic over F. ¤]´N¬O·í a2 ¬O algebraic over F ®É, a
¤]·|¬O algebraic over F. ¦ý¬O¤Ï¹L¨Ó, ¦pªG¤wª¾ a ¬O algebraic
over F, §ÚÌ´NµLªk§Q¥Îº¡¨¬ a ªº polynomial ¨Ó»s³y¤@Óº¡¨¬ a2
ªº polynomial ¤F. ¦P¾Ç©Î³|·QY f (a) = 0, §ÚÌ¥i¥H¥O
g(x) = f (x1/2), «h
g(a2) = f (a) = 0 §r! ³o¬O¤£¹ïªº, ¦]¬° f (x)
Y¦³©_¼Æ¦¸¶µ, «h
g(x) = f (x1/2) ´N¤£¦A¬O¤@Ó polynomial ¤F.
©Ò¥H¦b³oºØª¬ªp¤U´N¤£¥i¯à§Q¥Î§ä polynomial ªº¤èªk¨ÓÃÒ©ú a2 ¬O
algebraic over F. ¨ä¹ê·í a ¬O algebraic over F ®É§Q¥Î Theorem
10.1.9 ª¾¦s¦b¤@Ó field K ¬O F ªº finite extension ¥B
a
K. µM¦Ó K ¬O¤@Ó field ¥B a
K, ©Ò¥H·íµM a2
K,
©Ò¥H¦A¥Î¤@¦¸ Theorem 10.1.9 (©Î¬O§Q¥Î Lemma 10.1.3)
§Ú̱oÃÒ a2 ¤]¬O algebraic over F.
¥H«á§Ú̱`·|¥ÎÃþ¦üªº¤èªk¨Ó³B²z¬ÛÃöªº°ÝÃD.